精英家教网 > 初中数学 > 题目详情

【题目】用双十字相乘法分解因式

例:20x2+9xy-18y2-18x+33y-14

4×6+5×(-3)=94×(-7)+5×2=-13-3×(-7)+2×6=33

20x2+9xy-18y2-18x+33y-14=(4x-3y+2)(5x+6y-7)

双十字相乘法的理论根据是多项式的乘法,在使用双十字相乘法时,应注意它带有试验性质,很可能需要经过多次试验才能得到正确答案。

分解因式6x2-5xy-6y2-2xz-23yz-20z2=

【答案】(2x-3y-4z)(3x+2y+5z)

【解析】

结合题意画出图形,即可得出结论.

6x2-5xy-6y2-2xz-23yz-20z2

2×2+3×(-3)=-52×5z+3×(-4z)=-2z-3×5z+2×-4z=-23z

6x2-5xy-6y2-2xz-23yz-20z2

=(2x-3y-4z)(3x+2y+5z).

故答案为:(2x-3y-4z)(3x+2y+5z).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20,乒乓球每盒定价5元。现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售。某班需购买乒乓球拍4,乒乓球若干盒(不少于4).

(1)用代数式表示(所填式子需化简):

当购买乒乓球的盒数为x盒时,在甲店购买需付款 元;在乙店购买需付款 元。

(2)当购买乒乓球盒数为10盒时,若只能选择一家商店去购买,到哪家商店购买比较合算?并说明理由。

(3)当购买乒乓球盒数为10盒时,若不限制购买的商店,请你给出一种更为省钱的购买方案,并求出此时需付款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;

(3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.

1)第一次购书的进价是多少元?

2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的函数y=kx2+k2x﹣2的图象与y轴交于点C,

(1)当k=﹣2时,求图象与x轴的公共点个数;

(2)若图象与x轴有一个交点为A,当△AOC是等腰三角形时,求k的值.

(3)若x1时函数y随着x的增大而减小,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各点中,在函数y=﹣2x的图象上的是(  )

A.1B.(﹣1C.(﹣,﹣1)   D0,﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4cm,动点PQ同时从点A出发,以1cm/s的速度分别沿ABCADC的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则yx(0≤x≤8)之间的函数关系可用图象表示为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象过点A﹣30)和点B10),且与y轴交于点CD点在抛物线上且横坐标是﹣2

1)求抛物线的解析式;

2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD的面积为100,P为边CD上的任一点,EF分别为线段APBP的中点,则图中阴影部分的总面积为(

A. 30B. 25C. 22.5D. 20

查看答案和解析>>

同步练习册答案