精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.

(1)求此抛物线对应的函数表达式及点C的坐标;
(2)若抛物线上存在点M,使得△BCM的面积为 ,求出点M的坐标;
(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.

【答案】
(1)

解:把A(﹣1,1),B(2,2)代入y=ax2+bx得: ,解得

故抛物线的函数表达式为y= x2 x,

∵BC∥x轴,

设C(x0,2).

x02 x0=2,解得:x0=﹣ 或x0=2,

∵x0<0,

∴C(﹣ ,2)


(2)

解:设△BCM边BC上的高为h,

∵BC=

∴SBCM= h=

∴h=2,点M即为抛物线上到BC的距离为2的点,

∴M的纵坐标为0或4,令y= x2 x=0,

解得:x1=0,x2=

∴M1(0,0),M2 ,0),令y= x2 x=4,

解得:x3= ,x4=

,∴M3 ,0),M4 ,4),

综上所述:M点的坐标为:(0,0),( ,0),( ,0),( ,4)


(3)

解:∵A(﹣1,1),B(2,2),C(﹣ ,2),D(0,2),

∴OB=2 ,OA= ,OC=

∴∠AOD=∠BOD=45°,tan∠COD=

①如图1,

当△AOC∽△BON时, ,∠AOC=∠BON,

∴ON=2OC=5,

过N作NE⊥x轴于E,

∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,

在Rt△NOE中,tan∠NOE=tan∠COD=

∴OE=4,NE=3,

∴N(4,3)同理可得N(3,4);

②如图2,

当△AOC∽△OBN时, ,∠AOC=∠OBN,

∴BN=2OC=5,

过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,

∴NF⊥BF,

∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,

∴tan∠NBF=tan∠COD=

∴BF=4,NF=3,

∴N(﹣1,﹣2),同理N(﹣2,﹣1),

综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).


【解析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2 x,由于BC∥x轴,设C(x0 , 2).于是得到方程 x02 x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2 x=0,或令y= x2 x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.
【考点精析】本题主要考查了二次函数的性质和相似三角形的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;对应角相等,对应边成比例的两个三角形叫做相似三角形才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P、Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)D、F两点间的距离是
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是(  )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=kx+b与抛物线y= x2交于A(x1 , y1)、B(x2 , y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是(  )
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 , 它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 , 交x轴于A2;将C2绕A2旋转180°得到C3 , 交x轴于A3;…如此进行下去,直至得到C6 , 若点P(11,m)在第6段抛物线C6上,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的不等式组 ,其解集在数轴上表示正确的是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案