【题目】如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是( )
A.(﹣8,0) B.(0,8) C.(0,8) D.(0,16)
【答案】D
【解析】
试题分析:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,所以可求出从A到A3的后变化的坐标,再求出A1、A2、A3、A4、A5,得出A8即可.
解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,
∵从A到A3经过了3次变化,
∵45°×3=135°,1×()3=2.
∴点A3所在的正方形的边长为2,点A3位置在第四象限.
∴点A3的坐标是(2,﹣2);
可得出:A1点坐标为(1,1),
A2点坐标为(0,2),
A3点坐标为(2,﹣2),
A4点坐标为(0,﹣4),A5点坐标为(﹣4,﹣4),
A6(﹣8,0),A7(﹣8,8),A8(0,16),
故选:D.
科目:初中数学 来源: 题型:
【题目】下列计算结果正确的是( )
A.﹣2x2y22xy=﹣2x3y4
B.28x4y2÷7x3y=4xy
C.3x2y﹣5xy2=﹣2x2y
D.(﹣3a﹣2)(3a﹣2)=9a2﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否一定成立?说出你的理由;
②在如图2所示的直角坐标系中抛物线y=ax2+x+c经过A、D两点,当点E滑动到某处时,点F恰好落在此抛物线上,求此时点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把8a3-8a2+2a进行因式分解,结果正确的是( )
A. 2a(4a2-4a+1) B. 8a2(a-1)
C. 2a(2a+1)2 D. 2a(2a-1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】低碳生活备受关注.小明为了了解人们到某超市购物时使用购物袋的情况,利用星期日到该超市对部分购物者进行调查,并把调查结果绘制成两幅不完整的统计图.假设当天每人每次购物时都只用一个环保购物袋(可降解)或塑料购物袋(不可降解).
A.一自备环保购物袋
B.一自备塑料购物袋
C.一购买环保购物袋
D.一购买塑料购物袋
根据以上信息,回答下列问题:
(1)小明这次调查到的购物人数是 人次;
(2)补全两幅统计图;
(3)若当天到该超市购物者共有2000人次,请你估计该天使用环保购物袋有 人次,使用塑料购物袋有 人次;
(4)在大力倡导低碳生活的今天,你认为在购物时应尽量使用 购物袋.(填“环保”或“塑料”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com