精英家教网 > 初中数学 > 题目详情

【题目】已知⊙O的半径为2,点P是⊙O内一点,且OP= ,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为( )
A.4
B.5
C.6
D.7

【答案】B
【解析】解:如图:连接OA、OD,作OE⊥AC于E,OF⊥BD于F,

∵AC⊥BD,
∴四边形OEPF为矩形,
∵OA=OD=2,OP=
设OE为x(x>0),
根据勾股定理得,OF=EP= =
在Rt△AOE中,AE= =
∴AC=2AE=2
同理得,BD=2DF=2 =2
又∵任意对角线互相垂直的四边形的面积等于对角线乘积的
∴S四边形ABCD= AC×BD= ×2 ×2 =2 =2
当x2= 即:x= 时,四边形ABCD的面积最大,等于2 =5.
答案为:B.
作出弦心距,根据S四边形ABCD=对角线乘积的一半,列出函数关系式,配成顶点式,求出最值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列一段文字:在直角坐标系中,已知两点的坐标是Mx1y1),Nx2y2)),MN两点之间的距离可以用公式MN计算.解答下列问题:

1)若点P24),Q(﹣3,﹣8),求PQ两点间的距离;

2)若点A12),B4,﹣2),点O是坐标原点,判断AOB是什么三角形,并说明理由.

3)已知点A(55)B(-47),点Px轴上,且要使PA+PB的和最小,求PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小

B.平移和旋转的共同点是改变了图形的位置,而图形的形状大小没有变化

C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离

D.在平移和旋转图形中,对应角相等,对应线段相等且平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20,购买3棵榕树和2棵香樟树共需340.

(1)榕树和香樟树的单价各是多少?

(2)根据学校实际情况,需购买两种树苗共150,总费用不超过10840,且购买香樟树的棵数不少于榕树的1.5,请你算算该校本次购买榕树和香樟树共有哪几种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在平面直角坐标系中,点A(o,m),B(n,0)m, n满足.

(1)A,B的坐标.

(2)如图1, E为第二象限内直线AB上的一点,且满足,求点E的横坐标.

(3)如图2,平移线段BAOC, BO是对应点,AC是对应点,连接AC, EBA的延长线上一点,连接EO, OF平分∠COE, AF平分∠EAC, OFAF于点F,若∠ABO+OEB=α,请在图2中将图形补充完整,并求∠F (用含α的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )

A.2 <r<
B. <r≤3
C. <r<5
D.5<r<

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,∠EBF=2ABE,∠EDF=2CDE,则∠E与∠F之间满足的数量关系是(

A. E=FB. E+∠F=180°

C. 3E+∠F=360°D. 2E-F=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形中,

1)如图1,点为线段的中点,连接.若,求线段的长.

2)如图2为线段上一点(不与重合),以为边向上构造等边三角形,线段交于点,连接为线段的中点.连接判断的数量关系,并证明你的结论.

3)在(2)的条件下,若,请你直接写出的最小值.

查看答案和解析>>

同步练习册答案