【题目】某巡警骑摩托车在一条南北大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向北方向为正.当天行驶记录如下(单位:千米).
+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣2
(1)以岗亭为原点,用1个单位长度表示1KM,,在数轴上表示,A在岗亭何方,有多远?
(2)为该巡警巡逻时离岗亭最远是多少千米?
(3)在岗亭北面6千米处有个加油站,该巡警巡逻时经过加油站几次?
(4)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?
【答案】(1)数轴见解析,A在岗亭南方9km处;(2)该巡警巡逻时离岗亭最远是10千米;(3)该巡警巡逻时经过加油站4次;(4)该摩托车这天巡逻共耗油3.05升.
【解析】
(1)求出行驶记录的和,在数轴上表示出A处的位置,然后进行判断;
(2)求出每次行驶后所在位置,然后判断即可;
(3)根据行驶记录,依次计算是否经过加油站即可;
(4)求出各数据绝对值之和,乘以0.05即可得到结果.
解:(1)∵10+(-8)+6+(-13)+7+(-12)+3+(-2)=-9,
在数轴表示如图:
∴A在岗亭南方9km处;
(2)∵10,108=2,2+6=8,813=5,5+7=2,212=10,10+3=7,72=9,
∴该巡警巡逻时离岗亭最远是10千米;
(3)第一次向北行驶10km,此时第一次经过加油站,
第二次往回走8km,第二次经过加油站,
第三次向北行驶6km,10-8+6=8>6,第三次经过加油站,
第四次往回走13km,8-13=-5,第四次经过加油站,
第五次向北行驶7km,-5+7=2<6,所以不经过加油站,
第五次以后向南行驶距离较长,向北行驶距离较短,不会再经过加油站,
故该巡警巡逻时经过加油站4次;
(4)10+|﹣8|+6+|﹣13|+7+|﹣12|+3+|﹣2|=61km,
61×0.05=3.05(升),
答:该摩托车这天巡逻共耗油3.05升.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E。
(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你写出这个数量关系,并证明
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李先生在2019年10月第2周星期五股市收盘时,以每股9元的价格买进某公司的股票1000股,在11月第2周的星期一至星期五,该股票每天收盘时每股的涨跌(单位:元)情况如下表:
时 间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
每股涨跌/元 | 0 | -0.32 | +0.47 | -0.21 | +0.56 |
注:表中记录的数据为每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.
(1)请你判断在11月的第2周内,该股票价格收盘时,价格最高的是哪一天?
(2)在11月第2周内,求李先生购买的股票每股每天平均的收盘价格.(结果精确到百分位)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.
(1)求BF和DE的长;
(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)四边形ABEF是 ;(选填矩形、菱形、正方形、无法确定)(直接填写结果)
(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为 ,∠ABC= °.(直接填写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com