精英家教网 > 初中数学 > 题目详情

【题目】某市为了解旅游人数的变化情况,收集并整理了20171月至201912月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:

根据统计图提供的信息,下列推断不合理的是(

A.2017年至2019年,年接待旅游量逐年增加

B.2017年至2019年,各年的月接待旅游量高峰期大致在78月份

C.2019年的月接待旅游量的平均值超过300万人次

D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳

【答案】D

【解析】

根据折线图,逐项判断即可得答案.

由折线图可知:

A.2017年至2019年,年接待旅游量逐年增加,正确,故该选项不符合题意,

B.2017年至2019年,各年的月接待旅游量高峰期大致在78月份,正确,故该选项不符合题意,

C.2019年的月接待旅游量的平均值超过300万人次,正确,故该选项不符合题意,

D.2017年至2019年,各年1月至6月的折线相对于7月至12月比较平缓,即波动性更小,变化比较平稳,故该选项错误,符合题意,

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】深圳著名网红打卡地东部华侨城在2018年春节长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客奖达28.8万人次.

一家特色小面店希望在五一长期限期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴经验:若每碗卖25元,平均每天将销售3000碗,若价格每降低1元,则平均每天多销售30.

1)求出20182020年五一长假期间游客人次的年平均增长率;

2)为了更好地维护深圳城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过原点且与两坐标轴分别交于点和点,点的坐标为,点的坐标为,解答下列各题:

1)求圆心的坐标;

2)在上是否存在一点,使得是等腰三角形?若存在,请求出的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小石设计的“过圆上一点作圆的切线”的尺规作图的过程.

已知:如图1上一点P.

求作:直线PQ,使得PQ相切.

作法:如图2

①连接PO并延长交于点A

②在上任取一点B(点PA除外),以点B为圆心,BP长为半径作,与射线PO的另一个交点为C.

③连接CB并延长交于点Q.

④作直线PQ

所以直线PQ就是所求作的直线.

根据小石设计的尺规作图的过程.

1)使用直尺和圆规,补全图形:(保留作图痕迹)

2)完成下面的证明.

证明:∵CQ是的直径,

________(________________)(填推理的依据)

.

又∵OP的半径,

PQ的切线(________________)(填推理的依据)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a0)y轴交于点A,将点A向右平移2个单位长度,得到点B.直线x轴,y轴分别交于点CD.

1)求抛物线的对称轴.

2)若点A与点D关于x轴对称.

①求点B的坐标.

②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了在校运会中取得更好的成绩,小丁积极训练.在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是米,当铅球运行的水平距离为3米时,达到最大高度B.小丁此次投掷的成绩是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,P是边BC上的一动点(不与点BC重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF

1)若,直接写出的大小(用含的式子表示).

2)求证:.

3)连接CF,用等式表示线段AFBFCF之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,D是边BC上一点,以点A为圆心,AD长为半径作弧,如果与边BC有交点E(不与点D重合),那么称A-外截弧.例如,图中的一条A-外截弧.在平面直角坐标系xOy中,已知存在A-外截弧,其中点A的坐标为,点B与坐标原点O重合.

1)在点中,满足条件的点C是_______.

2)若点C在直线.

①求点C的纵坐标的取值范围.

②直接写出A-外截弧所在圆的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC中∠ACB90°EAB上,以AE为直径的⊙OBC相切于D,与AC相交于F,连接AD

1)求证:AD平分∠BAC

2)若DFAB,则BDCD有怎样的数量关系?并证明你的结论.

查看答案和解析>>

同步练习册答案