【题目】如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.
(1)求反比例函数和一次函数的解析式;
(2)请连结,并求出的面积;
(3)直接写出当时,的解集.
【答案】(1),;(2)4;(3).
【解析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(0,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<0时,k1x+b>0的解集为:-4<x<0.
解:(1)如图,连接,,
∵⊙C与轴,轴相切于点D,,且半径为,
,,
∴四边形是正方形,
,
,点,
把点代入反比例函数中,
解得:,
∴反比例函数解析式为:,
∵点在反比例函数
把代入中,可得,
,
把点和分别代入一次函数中,
得出:,
解得:,
∴一次函数的表达式为:;
(2)如图,连接,
,点的横坐标为,
的面积为:;
(3)由,根据图象可知:当时,的解集为:.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴只有一个公共点,且与轴交于点
(1)试判断该抛物线的开口方向,说明理由;
(2)若,轴交该抛物线于点,且是直角三角形,求抛物线的解析式;
(3)若直线()与该抛物线有两个交点,且与轴和轴分别交于点,记的面积为,求的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.
(1)求k和b的值;
(2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;
(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图
(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;
(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,弦,
(1)求证:是等边三角形.
(2)若点是的中点,连接,过点作,垂足为,若,求线段的长;
(3)若的半径为4,点是弦的中点,点是直线上的任意一点,将点绕点逆时针旋转60°得点,求线段的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.
(1)求证:;
(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果与相似,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6,∠AOB=30°.
(1)求点A、B的坐标;
(2)开口向上的抛物线经过原点O和点B,设其顶点为E,当△OBE为等腰直角三角形时,求抛物线的解析式;
(3)设半径为2的⊙P与直线OA交于M、N两点,已知,P(m,2)(m>0),求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于,两点,点在点的左侧,抛物线的顶点为,规定:抛物线与轴围成的封闭区域称为“区域”(不包含边界).
(1)如果该抛物线经过(1,3),求的值,并指出此时“区域”有_____个整数点;(整数点就是横纵坐标均为整数的点)
(2)求抛物线的顶点的坐标(用含的代数式表示);
(3)在(2)的条件下,如果区域中仅有4个整数点时,直接写出的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com