【题目】在直线l上摆放着三个正方形
(1)如图1,已知水平放置的两个正方形的边长依次是a,b斜着放置的正方形的面积S= ,两个直角三角形的面积和为 ;(均用a,b表示)
(2)如图2,小正方形面积S1=1,斜着放置的正方形的面积S=4,求图中两个钝角三角形的面积m1和m2,并给出图中四个三角形的面积关系;
(3)图3是由五个正方形所搭成的平面图,T与S分别表示所在的三角形与正方形的面积,试写出T与S的关系式,并利用(1)和(2)的结论说明理由.
【答案】(1)a2+b2,ab;(2)四个三角形的面积相等;(3)S=T.
【解析】
(1)根据题意,可以证得中间的两个三角形全等,再根据勾股定理,即可得出答案;
(2)求出两个钝角三角形的底边和高,然后根据三角形的面积公式求解即可;
(3)利用勾股定理分别求出S和T的值,然后比较求解即可.
(1)如图1所示:∵三个四边形均为正方形,
∴∠ACB+∠BAC=90°,∠ACB+∠DCE=90°,AC=CE,
∴∠BAC=∠DCE,
∵∠ABC=∠CDE=90°,
∴△ABC≌△CDE,
∴BC=DE=b,AB=CD=a,
∴S△ABC+S△CDE=ab,
同时AC2=AB2+BC2,
∵两个正方形的面积分别为a2,b2,
∴S=a2+b2,
(2)如图2所示,a=1,斜正方形边长c=2,b=,
由30°角和60°角易求出面积为m1的三角形底边长为1,高为,故m1=;
面积为m2的三角形边长为,高为1,故m2=.
结论:四个三角形的面积相等.
(3)S=T.如图3所示,首先由(2)知:T=S△ABC,
设小正方形边长为a,大正方形边长为b,
由(1)知:S=a2+b2,又图中四个小三角形的面积m=ab,
S△ABC=a2+b2+(a2+b2)+4×ab﹣(a+b)(2a+2b)=a2+b2=S,
∴S=T.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;…;这样一直作下去,得到一组线段:D0D1,D1D2,D2D3,…,则线段Dn﹣1Dn的长为_____(n为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=4,AC=3.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.
(1)AB= .
(2)当点N在边BC上时,x= .
(3)求y与x之间的函数关系式.
(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:
请你根据统计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BC边在x轴正半轴上,中线BD的反向延长线交y轴负半轴于点E.双曲线y=一条分支经过点A,若S△BEC=4,则k等于( )
A. 4B. 8C. 12D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三个数a、b、c满足其中一个数的两倍等于另外两个数的和,我们称这三个数a、b、c是“等差数”若正比例函数y=2x的图象上有三点A(m﹣1,y1)、B(m,y2)、C(2m+1,y3),且这三点的纵坐标y1、y2、y3是“等差数”,则m=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )
A. 2B. 2C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数y= 在第一象限图象上一点,连接OA,过点A作AB∥x轴(点B在点A右侧),连接OB,若OB平分∠AOX,且点B的坐标是(8,4),则k的值是( )
A.6B.8C.12D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知开口向下的抛物线y=ax2﹣2ax+3与x轴的交点为A、B两点(点A在点B的左边),与y轴的交点为C,OC=3OA
(1)请直接写出该抛物线解析式;
(2)如图,D为抛物线的顶点,连接BD、BC,P为对称轴右侧抛物线上一点.若∠ABD=∠BCP,求点P的坐标
(3)在(2)的条件下,M、N是抛物线上的动点.若∠MPN=90°,直线MN必过一定点,请求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com