【题目】在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图。
(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有_________名学生。
(2)补全女生等级评定的折线统计图。
(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率。
【答案】(1)50;(2)如下图;(3)
【解析】试题分析:(1)根据合格的男生有2人,女生有1人,得出合格的总人数,再根据评级合格的学生占6%,即可得出全班的人数;
(2)根据折线统计图和扇形统计图以及全班的学生数,即可得出女生评级3A的学生和女生评级4A的学生数,即可补全折线统计图;
(3)根据题意列举出所有可能的情况,再根据概率公式求解即可.
(1)因为合格的男生有2人,女生有1人,共计2+1=3人,
又因为评级合格的学生占6%,
所以全班共有:3÷6%=50(人);
(2)根据题意得:
女生评级3A的学生是:50×16%-3=8-3=5(人),
女生评级4A的学生是:50×50%-10=25-10=15(人),
(2)根据题意列表得:
∵共有12种等可能的结果数,其中一名男生和一名女生的共有7种,
∴选中一名男生和一名女生的概率为.
科目:初中数学 来源: 题型:
【题目】直线AB、CD相交于点O.
(1)OE、OF分别是∠AOC、∠BOD的平分线.画出这个图形.
(2)射线OE、OF在同一条直线上吗?(直接写出结论)
(3)画∠AOD的平分线OG.OE与OG有什么位置关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】过度包装即浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )
A.3.12×106
B.3.12×105
C.31.2×104
D.0.312×7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于某一函数,给出如下定义:若存在实数,对于一函数任意的函数值,函数值都满足,则称这个函数是有界函数,同时进一步规定,对某个有界函数,在所有满足条件的中,其最小值称为这个有界函数的确界值.例如如图所示的函数是有界函数,其确界值是1.5.
问:将有界函数+ 的图象向上平移个单位,得到的新函数的确界值是,当在什么范围时,满足.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶然相加,它们和的情况的变化规律如下:
2=12
2+4=23
2+4+6=34
2+4+6+8=45
……
请你根据上述规律解答下列问题:
(1)试一试:2+4+6+8+10+12+14+16= ;
(2)猜一猜:2+4+……+2n= ;(用含n的式子表示)
(3)用一用:利用上题的猜想结果,计算202+204+206+……+498+500的值(要有计算过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园门票的收费标准如下:
门票类别 | 成人票 | 儿童票 | 团体票(限5张及以上) |
价格(元/人) | 100 | 40 | 60 |
有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.
(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在F C′上,则∠EFH的度数为 ;
(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠B′FC′=18°,求∠EFH的度数;
(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠EFH=β°,求∠B′FC′的度数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com