【题目】对于某一函数,给出如下定义:若存在实数,对于一函数任意的函数值,函数值都满足,则称这个函数是有界函数,同时进一步规定,对某个有界函数,在所有满足条件的中,其最小值称为这个有界函数的确界值.例如如图所示的函数是有界函数,其确界值是1.5.
问:将有界函数+ 的图象向上平移个单位,得到的新函数的确界值是,当在什么范围时,满足.
【答案】和.
【解析】分析:需要分类讨论: , , 三种情况.函数向上平移m个单位后,分别求出此时确界值,再判断题意是否相符,得到结论即可.
本题解析:
(1)若, 则.
从而,
此时,函数最值为:最大值,最小值.
向上平移个单位后,最值变为:最大值,最小值.
∵前者正,后者负,且后者绝对值大
∵此时该函数确界为 ,按确界要求, .
解得: .
.(2)若, 则.
从而, .
此时,函数最值为:最大值,最小值.
向上平移个单位后,最值变为:最大值,最小值.
∵前者正,后者负,且前者绝对值大
此时该函数确界为.
按确界要求, .
解得: .
.(3)若, 则. 从而.
此时最大值为.平移后最大值为.
, .
此时函数最大值超过1, 该部分为空集.
综上所述: 的范围为和.
科目:初中数学 来源: 题型:
【题目】(1)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.
请将下面的解答过程补充完整,并填空(理由或数学式)
解:∵DE∥BC,∴∠DEF= .( )
∵EF∥AB,∴ =∠ABC.( )
∴∠DEF=∠ABC.(等量代换)
∵∠ABC=40°,∴∠DEF= °.
(2)应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图。
(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有_________名学生。
(2)补全女生等级评定的折线统计图。
(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中.
(1)把△ABC平移至A′的位置,使点A与A′对应,得到△A′B′C′;
(2)线段AA′与BB′的关系是: ;
(3)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com