【题目】(1)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.
请将下面的解答过程补充完整,并填空(理由或数学式)
解:∵DE∥BC,∴∠DEF= .( )
∵EF∥AB,∴ =∠ABC.( )
∴∠DEF=∠ABC.(等量代换)
∵∠ABC=40°,∴∠DEF= °.
(2)应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.
【答案】(1)答案见解析;(2)120.
【解析】试题分析:(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.
(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°-60°=120°.
试题解析:(1)∵DE∥BC,
∴∠DEF=∠EFC.(两直线平行,内错角相等)
∵EF∥AB,
∴∠EFC=∠ABC.(两直线平行,同位角相等)
∴∠DEF=∠ABC.(等量代换)
∵∠ABC=40°,
∴∠DEF=40°.
故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;
(2)∵DE∥BC,
∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)
∵EF∥AB,
∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)
∴∠DEF=180°-60°=120°.
故答案为:120.
科目:初中数学 来源: 题型:
【题目】如图,AB、DC被BD所截得的内错角是___________,AB、CD被AC所截是的内错角是_________,AD、BC被BD所截得的内错角是_________,AD、BC被AC所截得的内错角是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,抛物线在经过A,D两点.
(1)求该抛物线表达式;
(2)连接BD,将线段BD绕着D点顺时针旋转90度,得到DB’.直接写出点B’的坐标,并判断点B’是否落在抛物线上,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 下列事件中,最适合采用全面调查的是( )
A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查
C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于某一函数,给出如下定义:若存在实数,对于一函数任意的函数值,函数值都满足,则称这个函数是有界函数,同时进一步规定,对某个有界函数,在所有满足条件的中,其最小值称为这个有界函数的确界值.例如如图所示的函数是有界函数,其确界值是1.5.
问:将有界函数+ 的图象向上平移个单位,得到的新函数的确界值是,当在什么范围时,满足.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com