精英家教网 > 初中数学 > 题目详情
如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是(  )
A.2B.
2
C.
3
D.
3
2

作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.
作OQ⊥A′B,
∵点A与A′关于MN对称,点A是半圆上的一个二等分点,
∴∠A′ON=∠AON=90°,PA=PA′,
∵B是半圆上的一个六等分点,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=120°,
又∵OA=OA′=1,∠A′=30°,
∴A′Q=OA′cos30°=
3
2

∴A′B=
3

∴PA+PB=PA′+PB=A′B=
3

故选:C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,AB=14,BC=8,E在线段AB上,F在射线AD上.
(1)沿EF翻折,使A落在CD边上的G处(如图1),若DG=4,
①求AF的长;
②求折痕EF的长;
(2)若沿EF翻折后,点A总在矩形ABCD的内部,试求AE长的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC为等腰三角形,D、E分别是AB、AC上的点,且AD=AE,又AD:AB=2:3,将△ADE沿直线DE折叠,点D的落点记为A′,△则A′DE的面积S1与△ABC的面积S2之间的关系是(  )
A.
S1
S2
=
1
2
B.
S1
S2
=
7
8
C..
S1
S2
=.
4
9
D..
S1
S2
=
8
9

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一条两边沿互相平行的纸带按如图折叠.设∠1=x°,则∠α的度数为(  )
A.90-xB.90-
1
2
x
C.180-2xD.x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,将一组对边平行的纸条沿EF折叠,点A,B分别落在A′,B′处,线段FB′与AD交于点M.
(1)试判断△MEF的形状,并证明你的结论;
(2)如图②,将纸条的另一部分CFMD沿MN折叠,点C,D分别落在C′,D′处,且使MD′经过点F,试判断四边形MNFE的形状,并证明你的结论;
(3)当∠BFE=______度时,四边形MNFE是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小丽剪了一些直角三角形纸片,她取出其中的几张进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,试求△ACD的周长.
(2)如果∠CAD:∠BAD=4:7,求∠B的度数.
操作二:如图2,小丽拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,已知两直角边AC=6cm,BC=8cm,你能求出CD的长吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为(  )
A.3B.6C.2
3
D.
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)操作发现:
如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出△ABC关于y轴对称图形△A1B1C1

查看答案和解析>>

同步练习册答案