精英家教网 > 初中数学 > 题目详情
(1)操作发现:
如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
(1)猜想线段GF=GC,
证明:连接EG,
∵E是BC的中点,
∴BE=CE,
∵将△ABE沿AE折叠后得到△AFE,
∴BE=EF,
∴EF=EC,
∵EG=EG,∠C=∠EFG=90°,
∴△ECG≌△EFG(HL),
∴FG=CG;

(2)(1)中的结论仍然成立.
证明:连接EG,FC,
∵E是BC的中点,
∴BE=CE,
∵将△ABE沿AE折叠后得到△AFE,
∴BE=EF,∠B=∠AFE,
∴EF=EC,
∴∠EFC=∠ECF,
∵矩形ABCD改为平行四边形,
∴∠B=∠D,
∵∠ECD=180°-∠D,∠EFG=180°-∠AFE=180°-∠B=180°-∠D,
∴∠ECD=∠EFG,
∴∠GFC=∠GFE-∠EFC=∠ECG-∠ECF=∠GCF,
∴∠GFC=∠GCF,
∴FG=CG;
即(1)中的结论仍然成立.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是(  )
A.2B.
2
C.
3
D.
3
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,设图中的每个小正方形的边长为1,
(1)请画出△ABC关于x轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);
(2)直接写出A′,B′,C′三点的坐标:A′(______),B′(______),C′(______).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,D、E分别是AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若S△DEF=4cm2,则梯形BDEC的面积为______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知∠MON=45°,P是∠MON内的一点,点G、H分别是P点关于MO、NO的对称点,GH与OM,ON分别相交于点A,B.已知GH=5cm,则△PAB的周长是______cm.若连接GO、HO,则△GHO是______三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直角三角形纸片的两直角边长分别为6,8,现将△ABC如上右图那样折叠,使点A与点B重合,则BE的长是(  )
A.
25
4
B.
15
4
C.
25
2
D.
15
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,长方形纸片ABCD,点E,M分别在AD,BC边上,EM=9,BC=12,将纸片折叠使点D落在点M处,折痕为EF,试求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,长方形纸片ABCD中,AB=3cm,BC=4cm,现将A、C重合,使纸片折叠压平,设折痕为EF,则S△AEF=______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图将六边形ABCDEF沿着直线GH折叠,使点A、B落在六边形CDEFGH的内部,则下列结论一定正确的是(  )
A.∠1+∠2=900°-2(∠C+∠D+∠E+∠F)
B.∠1+∠2=1080°-2(∠C+∠D+∠E+∠F)
C.∠1+∠2=720°-(∠C+∠D+∠E+∠F)
D.∠1+∠2=360°-
1
2
(∠C+∠D+∠E+∠F)

查看答案和解析>>

同步练习册答案