分析 (1)根据等边△ABC的性质得出∠EBD=∠FCE,DB=CE,证得△BED≌△CFE,进而得证;
(2)根据等边△ABC的性质,证得△ADF≌△BED≌△CFE即可得出:△DEF是等边三角形.
解答 证明:(1)∵△ABC为等边三角形,且AD=BE=CF
又∵∠BAC=∠ABC=∠ACB=60°,
∴∠EBD=∠FCE,DB=CE,
在△BED与△CFE中,
$\left\{\begin{array}{l}{DB=EC}\\{∠DBE=∠ECF}\\{BE=CF}\end{array}\right.$,
∴△BED≌△CFE(SAS),
∴∠BDE=∠CEF;
(2)同理可得:△ADF≌△BED≌△CFE(SAS),
∴DF=ED=EF,
∴△DEF是一个等边三角形.
点评 此题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADF≌△BED≌△CFE是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 47,45 | B. | 45,45 | C. | 40,45 | D. | 47,45 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com