【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
【答案】解:(1)设每千克核桃应降价x元。
根据题意,得(60﹣x﹣40)(100+×20)=2240,
化简,得 x2﹣10x+24=0,解得x1=4,x2=6。
答:每千克核桃应降价4元或6元。
(2)由(1)可知每千克核桃可降价4元或6元。
∵要尽可能让利于顾客,∴每千克核桃应降价6元。
此时,售价为:60﹣6=54(元),。
答:该店应按原售价的九折出售。
【解析】方程的应用解题关键是找出等量关系,列出方程求解。本题等量关系为:
每千克核桃的利润×每天的销售量=每天获利2240元
(60﹣x﹣40) ·(100+×20)=2240。
求该店应按原售价的几折出售,只要求出新的售价,与原售价相比即可。
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1 , N关于BC的对称点为N2 , 求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校篮球社团决定购买运动装备。经了解,甲、乙两家运动产品经销店以同样的价格出售某种品牌的队服和篮球,已知每套队服比每个篮球多元,两套队服与三个篮球的费用相等.经洽谈,甲店的优惠方案是:每购买十套队服,送一个篮球,乙店的优惠方案是:若购买队服超过套,则购买篮球打八折.
(1)求每套队服和每个篮球的价格是多少?
(2)若篮球社团购买套队服和个篮球(是大于的整数),请用含的式子分别表示出到甲经销店和乙经销店购买装备所花的费用;
(3)在(2)的条件下,若,通过计算判断到甲、乙哪家经销店购买更划算。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,是一个长为 2m,宽为 2n 的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图 2 的形状拼图.
(1)图 2 中的图形阴影部分的边长为 ;(用含 m、n 的代数式表示)
(2)请你用两种不同的方法分别求图 2 中阴影部分的面积; 方法一: ;方法二: .
(3)观察图 2,请写出代数式(m+n)2、(m﹣n)2、4mn 之间的关系式: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:
运行区间 | 票价 | ||
上车站 | 下车站 | 一等座 | 二等座 |
余姚北 | 杭州东 | 82(元) | 48(元) |
(1)参加社会实践的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间每天可以生产甲种零件600个或乙种零件300个或丙种零件500个,这三种零件各一个可以配成一套,现在要用63天的生产中,使生产的三中零件全部配套,这个车间应该对这三种零件的生产各用几天才能生产出来的零件配套.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com