精英家教网 > 初中数学 > 题目详情

【题目】如图△ABC中,分别延长边ABBCCA,使得BD=ABCE=2BCAF=3CA,若△ABC的面积为1,则△DEF的面积为________.

【答案】18

【解析】

连接AECD,要求三角形DEF的面积,可以分成三部分(FCD+FCE+DCE)来分别计算,三角形ABC是一个重要的条件,抓住图形中与它同高的三角形进行分析计算,即可解得DEF的面积.

连接AECD
BD=AB
SABC=SBCD=1SACD=1+1=2
AF=3AC
FC=4AC
SFCD=4SACD=4×2=8
同理可以求得:SACE=2SABC=2,则SFCE=4SACE=4×2=8
SDCE=2SBCD=2×1=2
SDEF=SFCD+SFCE+SDCE=8+8+2=18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A(a0)B(0b),且ab满足a22abb2(b4)20,点C为线段AB上一点,连接OC

(1)直接写出a____b_____

(2)如图1POC上一点,连接PAPB.若PAB0,∠BPC30°.求点P的纵坐标;

(3)如图2,在(2)的条件下,点MAB上一动点,以OM为边在OM的右侧作等边OMN,连接CN.若OCt,求ONCN的最小值(结果用含t的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在 Rt△ABC中,∠ABC=90°, BD平分∠ ABC,∠CAD=45, AC=4,点E是线段BD的中点,则CE的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图(1),在ABC 中,∠BAC=70°,点 D BC 的延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BPCP 相交于点 P,求∠P 的度数.(写出完整的解答过程)

(感知):图(1)中,若∠BAC=m°,那么∠P= °(用含有 m 的代数式表示)

(探究):如图(2)在四边形 MNCB 中,设∠M=α,∠Nβα+β180°,四边形的内角∠MBC与外角∠NCD 的角平分线 BPCP 相交于点 P.为了探究∠P 的度数与 α β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM CN,设它们的交点为点 A 如图( 3 ), 则∠ A= (用含有 α β 的代数式表示), 因此∠P= .(用含有 α β 的代数式表示)

(拓展):将(2)中的 α+β180°改为 α+β180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点 P,其它条件不变,请直接写出∠P   .(用 αβ的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,AD是中线,EAD的中点,过点AAFBCBE的延长线于点F,连接CF.

(1) 求证:AD=AF;

(2) ABC满足什么条件时,四边形ADCF是矩形.并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BCAD于点EFEFAC于点O

1)求证:四边形AECF是菱形;(2)若AB=6AD=8,求四边形AECF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC1cm/s的速度移动,设运动的时间为ts.

(1)求BC边的长;

(2)当△ABP为直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.

根据上述信息,解答下列问题:
(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.

查看答案和解析>>

同步练习册答案