精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CEAB交半圆于点E.

(1)求∠D的度数;

(2)求证:以点C,O,B,E为顶点的四边形是菱形.

【答案】(1)∠D=30°;(2)见解析.

【解析】

(1)连接AC,根据切线的性质以及等腰三角形的性质得出∠D=∠ACD=∠ABC,根据圆周角定理得出∠ACB=90°,然后根据三角形内角和定理即可求得∠D的度数;

(2)连接OC、BE,先证得△AOC是等边三角形,然后证得四边形COBE是平行四边形即可证得结论.

(1)解:连接AC,

∵CD是⊙O的切线,

∴∠ACD=∠ABC,

∵AB是直径,

∴∠ACB=90°,

∵CD=CB,

∴∠D=∠ABC,

∴∠D=∠ACD=∠ABC,

∵∠D+∠ACD+∠ABC+∠ACB=90°,

∴∠D=30°;

(2)证明:连接OC、BE,

∵∠D=∠ACD=30°,

∴∠CAB=60°,

∵OA=OC,

∴△AOC是等边三角形,

∴AC=OC,∠AOC=60°,

∵CE∥AB,

∴AC=EB,

∴四边形ACEB是等腰梯形,OC=BE,

∴∠CAB=∠EBA=60°,

∴∠AOC=∠EBA=60°,

∴OC∥BE,

∴四边形COBE是平行四边形,

∵OC=OB,

∴以点C,O,B,E为顶点的四边形是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.

要直接求∠A的度数显然很因难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使ADAP,连接PDCD,则△PAD是等边三角形.

   ADAP=3,∠ADP=∠PAD=60°

∵△ABC是等边三角形

ACAB,∠BAC=60°

∴∠BAP   

∴△ABP≌△ACD

BPCD=4,   =∠ADC

∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2PC2

∴∠PDC   °

∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°

(2)如图3,在△ABC中,ABBC,∠ABC=90°,点P是△ABC内一点,PA=1,PB=2,PC=3,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的边BC为直径的⊙OAC于点D,过点D⊙O的切线交AB于点E.

(1)如图1,若∠ABC=90°,求证:OE∥AC;

(2)如图2,已知AB=AC,若sin∠ADE=tanA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.

(1)若这个矩形是正方形,那么边长是多少?

(2)当PQ的值为多少时,这个矩形面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标 纵坐标的对应值如下表:

0

1

2

0

4

6

6

4

从上表可知,下列说法正确的是

①抛物线与轴的一个交点为; ②抛物线与轴的交点为

③抛物线的对称轴是:直线;   在对称轴左侧增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图8×8正方形网格中,点ABCO都为格点.

(1)利用位似作图的方法,以点O为位似中心,可将格点三角形ABC扩大为原来的2倍.请你在网格中完成以上的作图(点ABC的对应点分别用A′、B′、C′表示);

(2)当以点O为原点建立平面坐标系后,点C的坐标为(﹣1,2),则A′、B′、C′三点的坐标分别为:A′:   B′:   C′:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:ab<0,b24a0<a+b+c<2,0<b<1,当x>﹣1时,y>0,其中正确结论的个数是

A.5个 B.4个 C.3个 D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;

②推断:的值为   

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AGBE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG=6,GH=2,则BC=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kxk0)分别交反比例函数在第一象限的图象于点AB,过点BBDx轴于点D,交的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是______

查看答案和解析>>

同步练习册答案