精英家教网 > 初中数学 > 题目详情

【题目】如图,以△ABC的边BC为直径的⊙OAC于点D,过点D⊙O的切线交AB于点E.

(1)如图1,若∠ABC=90°,求证:OE∥AC;

(2)如图2,已知AB=AC,若sin∠ADE=tanA的值.

【答案】(1)详见解析;(2)tanA=

【解析】

(1)连结OD,如图1,先根据切线的性质得到∠ODE=90°,然后通过HL证明Rt△OBE≌Rt△ODE,得到∠1=∠2,利用三角形的外角性质得到∠2=∠C,再根据平行线的判定定理即可得证;

(2)连结OD,作OF⊥CDF,DH⊥OCH,如图2,易证∠A=∠COD,根据切线的性质与两角互余可得∠ADE=∠DOF,则在Rt△DOF中,sin∠DOF==DF=x,则OD=3x,然后用含x的式子表示相关线段的长,然后求得tanA的值即可.

:(1)证明:连结OD,如图1,

∵DE⊙O的切线,

∴OD⊥DE,

∴∠ODE=90°,

Rt△OBERt△ODE中,

∴Rt△OBE≌Rt△ODE,

∴∠1=∠2,

∵OC=OD,

∴∠3=∠C,

∠1+∠2=∠C+∠3,

∴∠2=∠C,

∴OE∥AC;

(2)解:连结OD,作OF⊥CDF,DH⊥OCH,如图2,

∵AB=AC,OC=OD,

∠ACB=∠OCD,

∴∠A=∠COD,

∵DE⊙O的切线,

∴OD⊥DE,

∴∠ODE=90°,

∴∠ADE+∠ODF=90°,

∠DOF+∠ODF=90°,

∴∠ADE=∠DOF,

∴sin∠DOF=sin∠ADE=

Rt△DOF中,sin∠DOF==

DF=x,则OD=3x,

∴OF==2x,DF=CF=x,OC=3x,

DHOC=OFCD,

∴DH==x,

Rt△ODH中,OH==x,

∴tan∠DOH===

∴tan∠A=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图PA 为⊙O 的切线A 为切点 A 作弦 ABOP垂足为点 C,延长BO PA 的延长线交于点 D

(1) 求证PB 为⊙O 的切线

(2) OB=3,OD=5,求 PB 的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,抛物线y=-x2+bx+cx轴的两个交点分别为A(1,0),B(3,0).

(1)求抛物线的解析式;

(2)设点P在该抛物线上滑动,且满足条件SPAB=1的点P有几个?并求出所有点P的坐标;

(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从热气球C处测得地面A,B两点的俯角分别为30°,45°,此时热气球C处所在位置到地面上点A的距离为400米.求地面上A,B两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)在同一平面直角坐标系中,函数y=ax2+bxy=bx+a的图象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,Rt△ACB中,AC=3,BC=4,有一动圆⊙O始终与Rt△ACB的斜边AB相切于动点P,且⊙O始终经过直角顶点C

(1)如图2,当⊙O 运动至与直角边AC相切时,求此时⊙O 的半径r的长;

(2)试求⊙O 的半径r的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CEAB交半圆于点E.

(1)求∠D的度数;

(2)求证:以点C,O,B,E为顶点的四边形是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读解答:

题目:已知方程x2+3x+1=0的两根为a,b,求的值.

解:①∵△=b2﹣4ac=32﹣4×1×1=5>0a≠b

②由一元二次方程根与系数关系得:a+b=﹣3,ab=1;

③∴

问题:上面的解题过程是否正确?若不正确,指出错在哪一步?写出正确的解题过程.

查看答案和解析>>

同步练习册答案