【题目】已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】【答案(1)抛物线解析式为 ;
(2)满足条件的点P有三个坐标分别为(2,1),(,﹣1),(,﹣1);
(3)存在点M(2,﹣1),可使△AMC的周长最小.
【解析】
(1)将A(1,0),B(3,0)代入抛物线中,列方程组可求抛物线解析式;
(2)由于AB=3﹣1=2,而,故△PAB中,AB边上的高为1,即P点纵坐标为±1,代入抛物线解析式可求P点横坐标;
(3)过点C作抛物线的对称轴的对称点C',根据抛物线的对称性求得C′(4,﹣3),连接直线AC′,求直线AC′的解析式,直线AC′与对称轴的交点即为所求点M
解:(1)依题意有 ,
∴b=4,c=﹣3,
∴抛物线解析式为 ;
(2)如图,设P(x,y)
∵AB=2,
∴×2×|y|=1
∴y=±1
当y=1时,解得 ,
当y=﹣1时,解得,
∴满足条件的点P有三个坐标分别为(2,1),(,﹣1),(,﹣1);
(3)存在.
过点C作抛物线的对称轴的对称点C',如图
∵点C(0,﹣3),对称轴为x=2,
∴C′(4,﹣3),
设直线AC′的解析式为y=kx+b,
则,
∴k=﹣1,b=1,
∴直线AC′的解析式为y=﹣x+1,
直线AC′与对称轴x=2的交点为(2,﹣1),即M(2,﹣1),
∴存在点M(2,﹣1),可使△AMC的周长最小.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①9a﹣3b+c=0;②4a﹣2b+c>0;③方程ax2+bx+c﹣4=0有两个相等的实数根;④方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=﹣2,x2=2.其中正确结论的个数是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax+bx+c(a≠0)的图像,下列说法错误的是( )
A. 函数y的最大值是4 B. 函数的图象关于直线x=1对称
C. 当x<-1时,y随x的增大而增大 D. 当-4<x<1时,函数值y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.
(1)求证:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A,B两点的距离相等.
(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=37°,求∠CAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】标有,,,,,六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为,朝下一面的数为,得到平面直角坐标系中的一个点.已知小华前二次掷得的两个点所确定的直线经过点,则他第三次掷得的点也在这条直线上的概率为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.
(1)小明认为,如果从3名候选主持人中随机选拔1名,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?
(2)如果从3名候选主持人中随机选拔2名,请通过列表或画树状图求选拔的2名主持人恰好是1名男生和1名女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com