【题目】如图,把放置在量角器上,与量角器的中心重合,读得射线、分别经过刻度和,把绕点逆时针方向旋转到,下列结论:
①;
②若射线经过刻度,则与互补;
③若,则射线经过刻度45.
其中正确的是( )
A.①②B.①③C.②③D.①②③
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点是线段上的一点,是的中点,是的中点.
图1 图2 图3
(1)问题探究
①若,,求的长度;(写出计算过程)
②若,,则___________;(直接写出结果)
(2)继续探究
“创新”小组的同学类比想到:如图2,已知,在角的内部作射线,再分别作和的角平分线,.
③若,求的度数;(写出计算过程)
④若,则_____________;(直接写出结果)
(3)深入探究
“慎密”小组在“创新”小组的基础上提出:如图3,若,在角的外部作射线,再分别作和的角平分线,,若,则__________.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在综合与实践课上,老师请同学们以“两条平行线,和一块含角的直角三角尺(,)”为主题开展数学活动.
(1)如图(1),把三角尺的角的顶点放在上,若,求的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点、分别放在和上,请你探索并说明与之间的数量关系;
(3)如图(3),小亮把三角尺的直角顶点放在上,角的顶点落在上.若,,请用含,的式子直接表示与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为千米小时,同时一辆出租车从乙城开往甲城,车速为90千米小时,设客车行驶时间为小时
当时,客车与乙城的距离为多少千米用含a的代数式表示
已知,丙城在甲、乙两城之间,且与甲城相距260千米
求客车与出租车相距100千米时客车的行驶时间;列方程解答
已知客车和出租车在甲、乙之间的服务站M处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:
方案一:继续乘坐出租车到丙城,加油后立刻返回乙城,出租车加油时间忽略不计;
方案二:在M处换乘客车返回乙城.
试通过计算,分析小王选择哪种方案能更快到达乙城?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写做法。)
(1)作等∠A于∠1
(2)在∠A的两边分别作AM=AN=a
(3)连接MN
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为保持水土,美化环境,W中学准备在从校门口到柏油公路的这一段土路的两侧栽一些树,并要求土路两侧树的棵数相等间距也相等,且首、尾两端均栽上树,现在学校已备好一批树苗,若间隔30米栽一棵,则缺少22棵;若间隔35米栽一棵,则缺少14棵
(1)求学校备好的树苗棵数.
(2)某苗圃负责人听说W中学想在校外土路两旁栽树的上述情况后,觉得两树间距太大,既不美观,又影响防风固沙的效果,决定无偿支援W中学300棵树苗.请问,这些树苗加上学校自己备好的树苗,间隔5米栽一棵,是否够用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,点D在边BC上与B,C不重合,四边形ADEF为正方形,过点F作,交CA的延长线于点G,连接FB,交DE于点Q,得出以下结论:;:2;;其中正确结论的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:
(1)机动车行驶几小时后加油?加了多少油?
(2)请求出加油前油箱余油量Q与行驶时间t之间的关系式;
(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求之值(用含m的代数式表示);
(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com