精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的P与射线BA交于点D,射线PD交射线CA于点E.

(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.

(2)当BP=时,试说明射线CA与P是否相切.

(3)连接PA,若S△APE=S△ABC,求BP的长.

【答案】(1)0x);(2)相切;(3)

【解析】(1)过A作AFBC于F,过P作PHAB于H,∵∠BAC=120°,AB=AC=6,∴∠B=C=30°,PB=PD,∴∠PDB=B=30°,CF=ACcos30°=6×=∴∠ADE=30°,∴∠DAE=CPE=60°,∴∠CEP=90°,CE=AC+AE=6+y,PC==BC=PB+CP= =BD=2BH=x6,xx的取值范围是0x

(2)相切.理由如下:

BP=CP=PE=PC==PB,射线CA与P相切;

(3)当D点在线段BA上时,连接AP,S△ABC=BCAF==S△APE=AEPE=y×(6+y)=S△ABC=,解得:y=,代入得x=

当D点BA延长线上时,PC=EC=(6﹣y),PB+CP=x+(6﹣y)=∵∠PEC=90°,PE===(6﹣y),S△APE=AEPE=x=y(6﹣y)=S△ABC=,解得y=,代入得x=

综上可得,BP的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)

(1)填空:BC的长是

(2)求S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:
(1)这种统计图通常被称为什么统计图?
(2)此次调查共询问了多少户人家?
(3)超过半数的居民每周去多少次超市?
(4)请将这幅图改为扇形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.

(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.

①点B的坐标为( ),BK的长是 ,CK的长是

②求点F的坐标;

③请直接写出抛物线的函数表达式;

(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.

温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题
甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是(  )
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2axa50,若该方程的一个根为1,求a的值及该方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC和△DBE均为等腰直角三角形.
(1)求证:AD=CE;
(2)求证:AD和CE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、B、C在同一直线上,△ABD和△BCE都是等边三角形.则在下列结论中:①AP=DQ,②EP=EC,③PQ=PB,④∠AOB=∠BOC=∠COE.正确的结论是(填写序号).

查看答案和解析>>

同步练习册答案