精英家教网 > 初中数学 > 题目详情

【题目】如图所示,矩形的面积为,它的两条对角线交于点,以为邻边作平行四边形,平行四边形的对角线交于点,同样以为邻边作平行四边形……,依次类推,则平行四边形的面积为( )

A.B.C.D.

【答案】D

【解析】

因为矩形的对边和平行四边形的对边互相平行,且矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半依次可推下去.

解:根据题意分析可得:

∵四边形ABCD是矩形,

O1A=O1C

∵四边形ABC1O1是平行四边形,,

O1C1AB

BE=BC

S矩形ABCD=ABBCSABC1O1=ABBE=ABBC

∴面积为原来的

同理:每个平行四边形均为上一个面积的

故平行四边形ABC5O5的面积为:

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=FDA延长线上一点,GCF上一点,且ACG=AGCGAF=F=20°,则AB=  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DEAG于点E,BFAG于点F.

(1)求BF和DE的长;

(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形OABC中,OABC,∠OAB=90°O为原点,点C的坐标为(28),点A的坐标为(260),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.

(1)t为何值时,四边形ABDE是矩形;

(2)t为何值时,DE=CO

(3)连接AD,记△ADE的面积为S,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔,标价都是2/,但甲、乙两商店的优惠条件却不同.

甲商店:若购买不超过10,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.

乙商店:按标价的80%付款

在水性笔的质量等因素相同的条件下:

(1)设小明要购买的该品牌笔数是x(x>10)支,则甲商店购买水性笔的费用为 元;乙商店购买水性笔的费用为 ;(用含x的代数式表示,并化简.)

(2)若小明要购买该品牌笔30,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将ADF绕点A顺时针旋转90°后,得到ABQ,连接EQ,求证:

(1)EA是∠QED的平分线;

(2)EF2=BE2+DF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,表示立方米).

每月用水量

单价

不超过的部分

2/

超出不超出

4/

超出的部分

8/

请根据上表的内容解答下列问题:

1)若某户居民2月份用水,则应收水费_________.元

2)若该户居民3月份用水(其中),则应收水费多少元(用含a的代数式表示,并简化).

3)若该户居民45两个月共用水5月份用水量超过了4月份),设4月份,用水,则该户居民45两个月共交水费多少元(用含x的代数式表示,并简化).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与直线y=﹣x+3分别交于x轴、y轴上的B、C两点,抛物线的顶点为点D,联结CDx轴于点E.

(1)求抛物线的解析式以及点D的坐标;

(2)求tanBCD;

(3)点P在直线BC上,若∠PEB=BCD,求点P的坐标.

查看答案和解析>>

同步练习册答案