【题目】如图,点
,
在抛物线
上,且在该抛物线对称轴的同侧(点
在点
的左侧),过点
、
分别作
轴的垂线,分别交
轴于点
、
,交直线
于点
、
.设
为四边形
的面积.则下列关系正确的是( )
![]()
A. S=y2+y1 B. S=y2+2y1 C. S=y2-y1 D. S=y2-2y1
【答案】C
【解析】
首先根据题意可求得:y1,y2的值,A与C的坐标,即可用x1与x2表示出AB,CD,BD的值,易得四边形ABCD是直角梯形,即可得S=
(AB+CD)BD,然后代入其取值,整理变形,即可求得S与y1、y2的数量关系式.
解:根据题意得:y1=ax12+bx1+c,y2=ax22+bx2+c,
点A的坐标为:(x1,2ax1+b),点C的坐标为:(x2,2ax2+b),
∴AB=2ax1+b,CD=2ax2+b,BD=x2-x1,
∵EB⊥BD,CD⊥BD,
∴AB∥CD,
∴四边形ABCD是直角梯形,
∴S=
(AB+CD)BD=
(2ax1+b+2ax2+b)(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(ax22+bx2)-(ax12+bx1)=(ax22+bx2+c)-(ax12+bx1+c)=y2-y1.
即S=y2-y1.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=
,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
![]()
【答案】(1) 见解析; (2)3
;(3)见解析.
【解析】试题分析:(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;
(2)根据S△AOC=
,得到S△ACF=
,通过△ACF∽△DAE,求得S△DAE=
,过A作AH⊥DE于H,解直角三角形得到AH=
DH=
DE,由三角形的面积公式列方程即可得到结论;
(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=
(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.
试题解析:(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=
,∴S△ACF=
,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=
BD,∴AF=
BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴
,∵△ACF∽△DAE,∴
=
,∴S△DAE=
,过A作AH⊥DE于H,∴AH=
DH=
DE,∴S△ADE=
DEAH=
×![]()
=
,∴DE=
;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF与△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=
(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.
![]()
【题型】解答题
【结束】
25
【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2
,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:
;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点
的坐标为
.将点
绕着原点
按逆时针方向旋转
得到点
,延长
到点
,使
;再将点
绕着原点
按逆时针方向旋转
得到点
,延长
到点
,使
;…如此继续下去.
求:(1)点
的坐标;(2)点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADB=30°,EH=2cm,则BC的长度为( )cm.
![]()
A.8B.7C.6D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是抛物线
图象的一部分,已知抛物线的对称轴是
,与
轴的一个交点是
,有下列结论:
①
;
②
;
③
;
④抛物线与
轴的另一个交点是
;
⑤点
,
都在抛物线上,则有
.
其中正确的是( )
![]()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角坐标系中一条圆弧经过正方形网格的格点
、
、
.若
点的坐标为
,
点的坐标为
,
圆弧所在圆的圆心
点的坐标为________
点
是否在经过点
、
、
三点的抛物线上;
在
的条件下,求证:直线
是
的切线.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
![]()
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com