精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=2AC,AD平分BC且AD⊥AC,则∠BAC=________.

120°
分析:延长AD到E,使AD=DE,连接CE,BE,得到平行四边形,推出AB∥CE,AB=CE,求出∠AEC,即可求出答案.
解答:解:延长AD到E,使AD=DE,连接CE,BE,
∵AD=DE,BD=CD,
∴四边形ABEC是平行四边形,
∴AB∥CE,AB=CE,
∵AB=2AC,∠CAE=90°,
∴在直角△EAC中,CE=2AC,
∴∠AEC=30°,
∴∠BAD=∠AEC=30°,
∴∠BAC=30°+90°=120°.
故答案为:120°.
点评:本题主要考查对平行四边形的性质和判定,平行线的性质,含30度角的直角三角形等知识点的理解和掌握,能求出∠BAD的度数是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案