精英家教网 > 初中数学 > 题目详情
精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.
分析:(1)由于∠C=∠1,利用∠1是△ABD的外角,可得∠1=∠2+∠3,从而可得∠C=3∠3,再结合三角形内角和定理,可求∠3,从而可求∠2;
(2)利用AE是角平分线,可求∠DAE,结合(1)中所求∠3,可求∠DAC、∠1,在△ADE中,利用∠AED=180°-∠1-∠DAE,可求∠AED=90°,那么AE⊥BC.
解答:精英家教网解:(1)∵∠1=∠C,∠2=2∠3,
∴∠C=∠1=∠2+∠3=2∠3+∠3=3∠3,
∵∠BAC+∠2+∠C=180°,
即70°+2∠3+3∠3=180°,
∴∠3=22°,
∴∠2=2∠3=44°;

(2)AE⊥BC,
∵∠DAC=∠BAC-∠3=70°-22°=48°,
又∵AE平分∠DAC,
∴∠DAE=
1
2
∠DAC=24°
∴∠1=3∠3=66°,
∴∠AED=180-∠1-∠DAE=180°-66°-24°=90°,
即AE⊥BC.
点评:本题利用了三角形内角和定理、外角性质、解一元一次方程、垂直的判定等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案