精英家教网 > 初中数学 > 题目详情
27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.
分析:本题首先根据三角形的内角和定理求出∠ABC+∠ACB=180°-∠BAC=180°-60°=120°;再依据三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和,得到∠1+∠2+∠3+∠4=∠ABC+∠ACB=120°.
解答:解:∵△ABC中,∠BAC=60°,
∴∠ABC+∠ACB=180°-∠BAC=180°-60°=120°.
∵∠ABC与∠ACB分别是△ABD与△ACE的外角,
∴∠ABC=∠1+∠2,∠ACB=∠3+∠4.
∴∠1+∠2+∠3+∠4=∠ABC+∠ACB=120°.
点评:本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理即三角形的一个外角等于与它不相邻的两个内角之和.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案