【题目】周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6间的大小关系是( )
A.S3>S4>S6
B.S6>S4>S3
C.S6>S3>S4
D.S4>S6>S3
【答案】B
【解析】解:设正六边形的边长为a,如图所示,
则正△ABC的边长为2a,正方形ABCD的边长为 .
如图(1),过A作AD⊥BC,D为垂足;
∵△ABC是等边三角形,BC=2a,
∴BD=a,由勾股定理得,AD= = = a,
∴S3=S△ABC= BCAD= ×2a× a= a2≈1.73a2 .
如图(2),
∵四边形ABCD是正方形,
∴AB= ,
∴S4=S□ABCD=AB2= × = a2≈2.25a2 .
如图(3),过O作OG⊥BC,G为垂足,
∵六边形ABCDEF是正六边形,
∴∠BOC= =60°,
∴∠BOG=30°,OG= = = a.
∴S△BOC= × a×a= a2 ,
∴S6=6S△BOC=6× a= a2≈2.59a2 .
∵2.59a2>2.25a2>1.73a2 .
∴S6>S4>S3 .
故答案为:B.
根据正六边形的边长和半径相等,因此设正六边形的边长为a,再根据正六边形、正三角形、正方形的周长相等,用含a的代数式分别表示出正三角形和正方形的边长,然后分别求正六边形、正三角形、正方形的面积,比较它们的面积大小,即可得出答案。
科目:初中数学 来源: 题型:
【题目】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】上周六,小明一家共7人从某地出发去参观世博会.小明提议:让爸爸载着爷爷、奶奶、外公、外婆去,自己和妈妈从某41路车去,最后在地铁8号线某博物馆汇合,图中分别表示某41路车与小轿车在行驶中的路程(千米)与时间(分钟)关系,试观察图像并回答下列问题:
(1)某41路车在途中行驶的平均速度为 千米/分钟;此次行驶的路程是 千米;
(2)写出小轿车在行驶过程中与的函数关系式: ,定义域为 ;
(3)小明和妈妈乘坐的某41路出发 分钟后被爸爸的小轿车追上了.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:
(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;
(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.
(3)已知点A(5,5),B(-4,7),点P在x轴上,且要使PA+PB的和最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.平移和旋转的共同点是改变了图形的位置,而图形的形状大小没有变化
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D.在平移和旋转图形中,对应角相等,对应线段相等且平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是( )
A. ∠E=∠FB. ∠E+∠F=180°
C. 3∠E+∠F=360°D. 2∠E-∠F=90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com