| A. | 6$\sqrt{2}$ | B. | 10 | C. | 8 | D. | $\sqrt{31}$ |
分析 先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.
解答 解:∵∠ACB=∠DEC=90°,∠D=30°,
∴∠DCE=90°-30°=60°,
∴∠ACD=90°-60°=30°,
∵旋转角为15°,
∴∠ACD1=30°+15°=45°,
又∵∠A=45°,
∴△ACO是等腰直角三角形,
∴AO=CO=$\frac{1}{2}$AB=$\frac{1}{2}$×12=6,AB⊥CO,
∵DC=14,
∴D1C=DC=14,
∴D1O=14-6=8,
在Rt△AOD1中,AD1=$\sqrt{A{D}^{2}+{D}_{1}{O}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10.
故选:B.
点评 本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2016-2017学年浙江省瑞安市五校联考八年级下学期第一次月考数学试卷(解析版) 题型:单选题
把一元二次方程
化成一般形式
(a≠0),其中a、b、c 的值分别为( )
A. 2、3、﹣1 B. 2、﹣3、1 C. 2、﹣3、﹣1 D. 2、3、1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com