精英家教网 > 初中数学 > 题目详情

【题目】若二次函数y=x2+bx﹣5的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )
A.x1=0,x2=4
B.x1=1,x2=5
C.x1=1,x2=﹣5
D.x1=﹣1,x2=5

【答案】D
【解析】解:根据题意得抛物线的对称轴为直线x=2,
则﹣ =2,解得b=﹣4,
所以二次函数解析式为y=x2﹣4x﹣5,
解方程x2﹣4x﹣5=0得x1=﹣1,x2=5.
故选D.
【考点精析】关于本题考查的二次函数的概念和二次函数的图象,需要了解一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线.
(2)过点E作EH⊥AB于点H,求证:CD=HF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC与等腰△ADE的顶点A重合,AD=AE,∠DAE=30°,将△ADE绕顶点A旋转,在旋转过程中,当BD=CE时,∠BAD的大小可以是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.

(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)(5,0),并写出点A,D,E,F,G的坐标;

(2)连接BECG相交于点H,BECG相等吗?并计算∠BHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一动点,G是BC边上的一动点,GE∥AD分别交AC、BA或其延长线于F、E两点

(1)如图1,当BC=5BD时,求证:EG⊥BC;
(2)如图2,当BD=CD时,FG+EG是否发生变化?证明你的结论;
(3)当BD=CD,FG=2EF时,DG的值=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

求证:∠A+C=180°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)| ﹣2|+20140﹣(﹣ 1+3tan30°
(2)先化简:1﹣ ÷ ,再选取一个合适的a值代入计算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是________________.

查看答案和解析>>

同步练习册答案