【题目】如图,直线与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O点出发,沿路线O→A→B以每秒2个单位长度的速度运动,到达B点时运动停止.
(1)则A点的坐标为_____,B两点的坐标为______;
(2)当点P在OA上,且BP平分∠OBA时,则此时点P的坐标为______;
(3)设点P的运动时间为t秒(0≤t≤4),△BPA的面积为S,求S与t之间的函数关系式:并直接写出当S=8时点P的坐标.
【答案】(1)(8,0);(0,6);(2)(3,0);(3)S=24-6t(0≤t≤4),P(,0).
【解析】
(1)根据OA和OB的长度可求出A、B两点的坐标;
(2)过P作PD⊥BA于D.由角平分线的性质得到PD=OP,通过证明Rt△BDP≌Rt△BOP,得到BD=OB=6,DA= 4.在Rt△PDA中,由勾股定理即可求得结论;
(3)当0≤t≤4时,P在线段OA上运动,由OP=2t,PA=8-2t,根据三角形面积公式即可得出结论,当S=8时,代入解析式即可求得t的值,进而得出结论.
(1)∵OA=8,OB=6,∴A(8,0),B(0,6).
(2)过P作PD⊥BA于D.
∵BP平分∠OBA,∴PD=OP.
∵BP=BP,∴Rt△BDP≌Rt△BOP,∴BD=OB=6.
∵OA=8,OB=6,∴BA=10,∴DA=AB-BD=10-6=4.
在Rt△PDA中,∵,∴,解得:OP=3,∴P(3,0).
(3)∵OA=8,v=2,∴t=8÷2=4,∴P从O运动到A的时间为4秒,∴当0≤t≤4时,P在线段OA上运动.
OP=2t,PA=8-OP=8-2t,S=S△BAP=PAOB=(8-2t)6=24-6t.
当S=8时,8=24-6t,解得:t=,∴OP=2t =2×=,∴P(,0).
答:S= 24-6t(0≤t≤4),当S=8时,P(,0).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,三角形的三个顶点分别是, ,
(1)在所给的网格图中,画出这个平面直角坐标系;
(2)点经过平移后对应点为,将三角形作同样的平移得到三角形.
①画出平移后的三角形;
②若边上一点经过上述平移后的对应点为,用含,的式子表示点的坐标;(直接写出结果即可)
③求三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要900元;若购进甲种花卉40盆,乙种花卉30盆,需要960元.
(1)求购进甲、乙两种花卉每盆各需多少元?
(2)该花店购进甲,乙两种花卉共100盆,甲种花卉每盆售价20元,乙种花齐每盆售价16元,现该花店把100盆花卉全部售出,若获利超过480元,则至少购进甲种花卉多少盆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校想了解学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:
根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;
(2)补全条形统计图;
(3)该校共有800名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是 ,乒乓球的人数有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2mx+4m﹣8
(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.
(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在如图所示的平面直角坐标系中,依次连接下列各点: A(-5,0),B(1,4),C(3,3),D(1,0),E(3,-3),F(1,-4).
(2)请你在如图所示的方格纸上按照如下要求设计直角三角形:
①使它的三边中有一边边长不是有理数;
②使它的三边中有两边边长不是有理数;
③使它的三边边长都不是有理数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com