【题目】某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要900元;若购进甲种花卉40盆,乙种花卉30盆,需要960元.
(1)求购进甲、乙两种花卉每盆各需多少元?
(2)该花店购进甲,乙两种花卉共100盆,甲种花卉每盆售价20元,乙种花齐每盆售价16元,现该花店把100盆花卉全部售出,若获利超过480元,则至少购进甲种花卉多少盆?
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:
实验次数n | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 |
摸到红球 次数m | 151 | 221 | 289 | 358 | 429 | 497 | 571 | 702 |
摸到红球 频率 | 0.75 | 0.74 | 0.72 | 0.72 | 0.72 | 0.71 | a | b |
(1)表格中a=_____;(精确到0.01)
(2)估计从袋子中摸出一个球恰好是红球的概率约为______;(精确到0.1)
(3)如果袋子中有7个红球,那么袋子中除了红球,估计还有几个其他颜色的球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点A的坐标为(-4,4),点B的坐标为(0,2).
(1)求直线AB的解析式;
(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC-OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;
(3)如图2,点M(-4,0)和N(2,0)是x轴上的两个点,点P是直线AB上一点.当△PMN是直角三角形时,请求出满足条件的所有点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.
(1)当售价定为多少元时,每天的利润为140元?
(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A,B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限.
(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A,B两点的横坐标的乘积;
(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,求证:A、B两点横坐标的乘积是一个定值;
(3)在(2)的条件下,如果直线AB与x轴、y轴分别交于点P、D,且点B的横坐标为 .那么在x轴上是否存在一点Q,使△QDP为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O点出发,沿路线O→A→B以每秒2个单位长度的速度运动,到达B点时运动停止.
(1)则A点的坐标为_____,B两点的坐标为______;
(2)当点P在OA上,且BP平分∠OBA时,则此时点P的坐标为______;
(3)设点P的运动时间为t秒(0≤t≤4),△BPA的面积为S,求S与t之间的函数关系式:并直接写出当S=8时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:我们把对非负实数“四舍五入”到个位的值记为,
即当为非负整数时,若,则.
例如:,,….
请解决下列问题:
(1)______;
(2)若,则实数的取值范围是_________;
(3)①;
②当为非负整数时,;
③满足的非负实数只有两个.其中结论正确的是_____(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2013年四川南充3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com