【题目】在平面直角坐标系xOy中,直线: 与抛物线相交于点A(,7).
(1)求m,n的值;
(2)过点A作AB∥x轴交抛物线于点B,设抛物线与x轴交于点C、D(点C在点D的左侧),求△BCD的面积;
(3)点E(t,0)为x轴上一个动点,过点E作平行于y轴的直线与直线和抛物线分别交于点P、Q.当点P在点Q上方时,求线段PQ的最大值.
【答案】(1)m=1,n=3;(2)S△BCD=21;(3)PQ的最大值为9.
【解析】试题分析:
(1)把点A(-2,7)分别代入两个函数的解析式即可求得m=1,n=3;
(2)由(1)中所得m=1可得抛物线的解析式为,令,求出对应的的值即可求得C、D的坐标;根据点A的坐标和AB∥轴交抛物线于点B,可求得点B的坐标,由此即可求出△BCD的面积;
(3)由题意,可知P(t,-2 t+3),Q( t,t2-4 t-5),可得PQ= -t2+2 t+8=-( t-2) 2+9;由一次函数和二次函数的解析式组成方程组,解方程组可求得两函数图象的交点坐标,从而可得求得当点P在点Q上方时,t的取值范围,结合所得PQ= -t2+2 t+8=-( t-2) 2+9即可求得PQ的最大值.
试题解析:
(1)把点A(-2,7)分别代入两个函数的解析式得:
,解得:m=1,n=3;
(2)由m=1可得抛物线表达式为y=x2-4x-5,
令y=0得,x2-4x-5=0. 解得x1=-1,x2=5,
∴抛物线y=x2-4x-5与x轴得两个交点C、D的坐标分别为C(-1,0),D(5,0),
∴CD=6,
∵A(-2,7),AB∥x轴交抛物线于点B,根据抛物线的轴对称性,可得B(6,7),
∴S△BCD=21;
(3)由题意,可知P(t,-2 t+3),Q( t,t2-4 t-5),
由 解得: , ,
∴直线y=-2x+3与抛物线y= x2-4x-5的两个交点坐标分别为(-2,7)和(4,-5),
∵点P在点Q上方,
∴-2<t<4,
又∵在PQ= -t2+2 t+8=-( t-2) 2+9中,a=-1<0,
∴PQ的最大值为9.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线和轴上.已知C1(1,-1),C2(, ),则点A3的坐标是________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决问题:
一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.
(2)小明家距小彬家多远?
(3)货车一共行驶了多少千米?
(4)货车每千米耗油0.2升,这次共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=6,AD=9,AF平分∠BAD交BC于点E,交DC的延长线于点F,BG⊥AF于点G,BG=4,EF=AE,则△CEF的周长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了推进书香校园建设,加强学生课外阅读,某校开展了“走近名家名篇”的主题活动;学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分,如下:
时间(单位:) | 频数(人数) | 频率 |
2 | 0.04 | |
3 | 0.06 | |
15 | 0.30 | |
0.50 | ||
5 |
请根据图表信息回答下列问题:
(1)频数分布表中的_________,___________;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校1200名学生中评为“阅读之星”的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点I是△ABC的内心,AI的延长线交△ABC的外接圆⊙O于点D.
(1)求证:DB=DC=DI;
(2)若AB是⊙O的直径,OI⊥AD,求tan的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,,点P为AC边上一点,将线段AP绕点A顺时针方向旋转,当AP旋转至时,点恰好在同一直线上,此时于点E.
(1)求证:
(2)若,求AE的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C 为线段 AD 上一点,B 为 CD 的中点,AD=13cm,BD=3cm.
(1)图中共有 条线段;
(2)求 AC 的长;
(3)若点 E 在线段 AD 上,且 BE=2cm,求 AE 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com