【题目】如图,C 为线段 AD 上一点,B 为 CD 的中点,AD=13cm,BD=3cm.
(1)图中共有 条线段;
(2)求 AC 的长;
(3)若点 E 在线段 AD 上,且 BE=2cm,求 AE 的长.
科目:初中数学 来源: 题型:
【题目】根据要求作图.
(1)如图1,平行四边形ABCD,点E,F分别在边AD,BC上,且AE=CF,连接EF.请你只用无刻度直尺画出线段EF的中点O.(保留画图痕迹,不必说明理由).
(2)如图2,平行四边形ABCD,点E在边AB上,请你只用无刻度直尺在边CD上找一点F,使得四边形AECF为平行四边形,并说明理由.(注意:无刻度直尺只能过点画线段或直线或射线).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线: 与抛物线相交于点A(,7).
(1)求m,n的值;
(2)过点A作AB∥x轴交抛物线于点B,设抛物线与x轴交于点C、D(点C在点D的左侧),求△BCD的面积;
(3)点E(t,0)为x轴上一个动点,过点E作平行于y轴的直线与直线和抛物线分别交于点P、Q.当点P在点Q上方时,求线段PQ的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴的另一个交点为点B.点D在该抛物线上,且位于直线AC的上方.
(1)求上述抛物线的表达式;
(2)联结BC、BD,且BD交AC于点E,如果△ABE的面积与△ABC的面积之比为4:5,求∠DBA的余切值;
(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=7,AC=6,∠A=45°,点D、E分别在边AB、BC上,将△BDE沿着DE所在直线翻折,点B落在点P处,PD、PE分别交边AC于点M、N,如果AD=2,PD⊥AB,垂足为点D,那么MN的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两车从A市去往B市,甲比乙出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:
(1)A、B两市的距离是 千米,甲到B市后 小时乙到达B市;
(2)求甲车返回时的路程s(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;
(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完全平方公式:(a±b)2=a2±2ab+b2适当的变形,可以解决很多的数学问题.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因为a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根据上面的解题思路与方法,解决下列问题:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=5,两正方形的面积和S1+S2=17,求图中阴影部分面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com