【题目】某商场销售一批衬衫,平均每天可售出件,每件盈利元.为了扩大销售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫的单价每下降元,商场平均每天可多售出件.
如果商场通过销售这批衬衫每天获利元,那么衬衫的单价应下降多少元?
当每件衬衫的单价下降多少元时,每天通过销售衬衫获得的利润最大?最大利润为多少元?
【答案】(1)每件衬衫应降20元;
(2)每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.
【解析】
(1)根据总利润=每件利润×销售量列方程,求解即可;
(2)设每天利润为w元,每件衬衫应降价x元,根据题意可得利润表达式,运用函数的性质求最值.
(1)设衬衫的单价应下降x元,由题意得:
1200=(20+2x)×(40﹣x)
解得:x=20或10,∴每天可售出(20+2x)=60或40件;
经检验,x=20或10都符合题意.
∵为了扩大销售,增加盈利,∴x应取20元.
答:衬衫的单价应下降20元.
(2)w=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250
当x=15时,盈利最多为1250元.
科目:初中数学 来源: 题型:
【题目】某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为
(1)用含x的代数式表示低3年的可变成本为 万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.
(1)如图1,当点E在线段AC上时,求证:△DEC∽△DFB.
(2)当点E在线段AC的延长线上时,(1)中的结论是否仍然成立?若成立,请结合图2给出证明;若不成立,请说明理由;
(3)若AC=,BC=2,DF=4,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知圆锥的底面半径是2,母线长是6.
(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;
(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B、C、D都在上,过点C作交OB延长线于点A,连接CD,且,.
(1)直线AC与有怎样的位置关系?为什么?
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.
并整理分析数据如下表:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | 7 | 7 | 1.2 | |
乙 | 7 | 8 |
(1)求,,的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形的边长为2,=60°,对角线,相交于点O.以点O为坐标原点,分别以,所在直线为x轴、y轴,建立如图所示的直角坐标系.以为对角线作菱形∽菱形,再以为对角线作菱形∽菱形,再以为对角线作菱形∽菱形,,按此规律继续作下去,在x轴的正半轴上得到点,,,......,,则点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)在平面直角坐标系中画出与△ABC关于点P(1,0)成中心对称的△A'B'C',并分别写出点A',B',C'的坐标;
(2)如果点M(a,b)是△ABC边上(不与A,B,C重合)任意一点,请写出在△A'B'C'上与点M对应的点M'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
(1)请求出旋转角的度数;
(2)请判断与的位置关系,并说明理由;
(3)若,,试求出四边形的对角线的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com