精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(3,0)和点B(2,3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=
(1)求这条抛物线的表达式及对称轴;
(2)联结AB、BC,求∠ABC的正切值;
(3)若点D在x轴下方的对称轴上,当SDBC=SADC时,求点D的坐标.

【答案】
(1)解:把A(3,0)和点B(2,3)代入y=﹣x2+bx+c得到

解得

∴抛物线的解析式为y=﹣x2+2x+3,

对称轴x=1


(2)解:如图,作BE⊥OA于E.

∵A(3,0),B(2,3),tan∠CAO=

∴OC=1,

∴BE=OA=3,AE=OC=1,∵AEB=∠AOC,

∴△AOC≌△BEA,

∴AC=AB,∠CAO=∠BAE,

∵∠ABE+∠BAE=90°,

∴∠CAO+∠BAE=90°,

∴∠CAB=90°,

∴△ABC是等腰直角三角形,

∴∠ABC=45°,

∴tan∠ABC=1


(3)解:如图过点C作CD∥AB交对称轴于D,

则SDBC=SADC

∵AB⊥AC,AB∥CD,

∴AC⊥CD,

∵直线AC的解析式为y= x﹣1,

∴直线CD的解析式为y=﹣3x﹣1,当x=1时,y=﹣4,

∴点D的坐标为(1,﹣4).


【解析】(1)把A(3,0)和点B(2,3)代入y=﹣x2+bx+c,解方程组即可解决问题.(2)如图,作BE⊥OA于E.只要证明△AOC≌△BEA,推出△ABC是等腰直角三角形,即可解决问题.(3)如图过点C作CD∥AB交对称轴于D,则SDBC=SADC , 先求出直线AC的解析式,再求出直线CD的解析式即可解决问题.
【考点精析】通过灵活运用抛物线与坐标轴的交点和解直角三角形,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△OAB的顶点Ax轴的正半轴上,BC=2AC , 点BC在反比例函数yx>0)的图象上,则△OAB的面积为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=x2﹣2x+m(m>0)的对称轴与比例系数为5的反比例函数图象交于点A,与x轴交于点B,抛物线的图象与y轴交于点C,且OC=3OB.

(1)求点A的坐标;
(2)求直线AC的表达式;
(3)点E是直线AC上一动点,点F在x轴上方的平面内,且使以A、B、E、F为顶点的四边形是菱形,直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下面算式,解答问题:

……

(1)请求出1 3 5 7 9 11的结果为

请求出1 3 5 7 9 29 的结果为

(2)若n 表示正整数请用含 n 的代数式表示1 3 5 7 9 (2n 1) (2n 1) 的值为

(3)请用上述规律计算: 41 43 45 77 79 的值(要求写出详细解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在处,AD于点E

(1)试判断△BDE的形状,并说明理由;

(2)若,求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为(
A.115°
B.120°
C.130°
D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):

(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为 O的直径,弦AE//CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使 PED= C.

(1)求证:PE是 O的切线;
(2)求证:ED平分 BEP;
(3)若 O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 AB,CD 相交于点O,OE 平分∠AOD,OF⊥OC.

(1)图中∠AOF 的余角是_____ _____(把符合条件的角都填出来);

(2)如果∠AOC=120°,那么根据____ ______,可得∠BOD=__________°;

(3)如果∠1=32°,求∠2∠3的度数.

查看答案和解析>>

同步练习册答案