【题目】如图,点A,B,C,D,E,F,G,H为⊙O的八等分点,AD与BH的交点为I,若⊙O的半径为1,则HI的长等于( )
A. 2﹣ B. 2+ C. 2 D.
【答案】D
【解析】
连接AB、OH,作OM⊥AD于M,ON⊥BH于N,在IH上截取NK,使得ON=NK,连接OK.根据圆周角定理求出∠A=∠B=45°,∠H=22.5°,根据弧、弦、圆心角的关系及垂径定理可证明四边形OMIN是正方形,设OM=a,在Rt△ONH中,利用勾股定理列方程求出a的值,进而可求出HI的值.
如图,连接AB、OH,作OM⊥AD于M,ON⊥BH于N,在IH上截取NK,使得ON=NK,连接OK.
∵点A,B,C,D,E,F,G,H为⊙O的八等分点,
∴∠A=∠B==45°,∠H==22.5°,
∴∠AIB=90°,
∴∠MIN=∠OMI=∠ONI=90°,
∴四边形OMIN是矩形,
∵=,
∴AD=BH,
∴OM=ON,
∴四边形OMIN是正方形,设OM=a,
∵ON=NK,
∴∠OKN=45°,
∵∠OKN=∠H+∠KOH,
∴∠H=∠KOH=22.5°,
∴OK=KN=a,
在Rt△ONH中,a2+(a+a)2=1,
∴a=,
∴IH=(2+)a=.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,已知: ,点……在射线ON上,点……在射线OM上,△、△、△……均为等边三角形,若,则△的边长为( )
A. 6 B. 12 C. 32 D. 64
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还有4升油.假设加油前、后汽车都以100千米小时的速度匀速行驶,已知油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示.
(1)求张师傅加油前油箱剩余油量(升)与行驶时间(小时)之间的关系式;
(2)求出的值;
(3)求张师傅途中加油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.
(1)填空:OA= ,k= ,点E的坐标为 ;
(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.
①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;
②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;
③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k的值是( )
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系xOy中,一次函数的图象分别与x,y轴交于A,B两点,正比例函数的图象与交于点C(m,3),
(1)求m的值及的解析式;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com