精英家教网 > 初中数学 > 题目详情

【题目】小明身高为1.6米,通过地面上的一块平面镜C,刚好能看到前方大树的树梢E,此时他测得俯角为45度,然后他直接抬头观察树梢E,测得仰角为30度.求树的高度.(结果保留根号)

【答案】解:设树的高度为x米,过点A作DE的垂线,垂足为F,
∵由题意得△ABC与△CDE都是直角三角形,
∴AB=BC=1.6米,CD=DE=x.
∵∠B=∠D=∠AFD=90°,
∴四边形ABDF是矩形,
∴AF=BD=x+1.6,DE=AB=1.6,EF=x﹣1.6.
∵∠EAF=30°,
∴tan∠EAF= = = ,解得x=
答:树的高度为 米.

【解析】设树的高度为x米,过点A作DE的垂线,垂足为F,再根据∠B=∠D=∠AFD=90°得出四边形ABDF是矩形,由锐角三角函数的定义即可得出结论.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某玩具店进了一排黑白塑料球,共5箱,每箱的规格、数量都相同,其中每箱中装有黑白两种颜色的塑料球共3000个,为了估计每箱中两种颜色球的个数,随机抽查了一箱,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的概率在0.8附近波动,则此可以估计这批塑料球中黑球的总个数,请将黑球总个数用科学记数法表示约为个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中,EF是对角线BD上的两点, 如果添加一个条件使ABE≌△CDF,则添加的条件不能是(  )

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列4个结论中结论正确的有
①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察图,解答下列问题.

(1)图中的小圆圈被折线隔开分成六层,第一层有1个小圆圈,第二层有3个圆圈,第三层有5个圆圈,……,第六层有11个圆圈.如果要你继续

下去,那么第七层有几个小圆圈?第n层呢?

(2)某一层上有77个圆圈,这是第几层?

(3)数图中的圆圈个数可以有多种不同的方法.

比如:前两层的圆圈个数和为(1+3)或22

由此得,1 + 3 = 22.

同样,

由前三层的圆圈个数和得:1 + 3 + 5 = 32.

由前四层的圆圈个数和得:1 + 3 + 5 + 7 = 42.

由前五层的圆圈个数和得:1 + 3 + 5 + 7 + 9 = 52.

……

根据上述请你猜测,从1开始的n个连续奇数之和是多少?用公式把它表示出来.

(4)计算:1 + 3 + 5 + … + 19的和;

(5)计算:11 + 13 + 15 + … + 99的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线ACBD相交于O,不能判定四边形ABCD是平行四边形的是(

A. ABCD,AO=CO B. ABDC,ABC=ADC

C. AB=DC,AD=BC D. AB=DC,ABC=ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.
应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为( )

A.(4,60°)
B.(4,45°)
C.(2 ,60°)
D.(2 ,50°)

查看答案和解析>>

同步练习册答案