精英家教网 > 初中数学 > 题目详情
20.若关于x,y的二元一次方程组$\left\{\begin{array}{l}{3x+y=1+a}\\{x+3y=3}\end{array}\right.$的解满足x+y<505,则a的取值范围(  )
A.a>2016B.a<2016C.a>505D.a<505

分析 方程组两方程相加表示出x+y,代入已知不等式求出a的范围即可.

解答 解:$\left\{\begin{array}{l}{3x+y=1+a①}\\{x+3y=3②}\end{array}\right.$,
①+②得:4(x+y)=a+4,即x+y=$\frac{a+4}{4}$,
代入已知不等式得:$\frac{a+4}{4}$<505,
解得:a<2016,
故选B

点评 此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.若关于x、y的方程组$\left\{\begin{array}{l}x+2y=5\\ 2x+ay=4\end{array}\right.$的解都是正整数,那么整数a的值有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,在平面直角坐标系中,抛物线y=$\frac{1}{2}$x2+bx+c交x轴于A、B两点,交y轴于点C,OC=3,交直线OD于D,直线OD的解析式为y=$\frac{3}{4}$x,点D的横坐标为4.
(1)求此抛物线的解析式;
(2)在(1)中如图2,点P为y轴左侧抛物线上一点,作PE⊥y轴,垂足为E,交抛物线另一侧于F,连接CF,求PE•tan∠ECF的值;
(3)在(2)中如图3,连接OP,M为y轴正半轴上一点,N为射线OD上一点,是否存在点P满足OP=MN,∠PON+∠OMN=180°,且ON=2OM?若存在,求出此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,则四边形ABCD和四边形A′B′C′D′的周长的比为1:2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2$\sqrt{5}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解不等式:1-$\frac{x-1}{3}$$≤\frac{2x+3}{3}$+x.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=$\sqrt{50}$,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有(  )
A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程与解不等式组:
(1)解方程:x2-4x-6=0
(2)解不等式组:$\left\{\begin{array}{l}x-3(x-2)≤4\\ \frac{1+2x}{3}>x-1\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于O,AD与BC交于P,BE与CD交于Q,连接PQ,以下六个结论:①AD=BE,②PQ∥AE,③AP=BQ,④PD=QE,⑤∠AOB=60°,⑥△PQC是等边三角形;成立的结论有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

同步练习册答案