精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为124;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为-26,那么=________

【答案】8

【解析】

首先根据一位老师改动了方程的二次项系数后,得到的新方程有两个根为124,求作一个符合条件的一元二次方程,即x2-16x+48=0,进而表示原方程是ax2-16kx+48k=0;再根据另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为-26,求作一个符合条件的一元二次方程,即x2-4x-12=0,此方程两边同乘以4k,得4kx2-16kx-48k=0,从而得到a=4k,最后即可求解.

利用新方程有两个根为124构造1个一元二次方程为:x2-(12+4)x+12×4=0 x2-16x+48=0,与ax2+bx+c=0对应.于是得到:b=-16k,c=48k.(其中k是不为0的整数.)从而原方程为:ax2-16kx+48k=0.同样再由另一个新方程的两个根-26,构造一个方程:x2-(-2+6)x+(-2)×6=0,即x2-4x-12=0.此方程两边同乘以4k,得 4kx2-16kx-48k=0,它与ax2-16kx+48k=0对应,得 a=4k,从而原方程就是:4kx2-16kx+48k=0,所以==8.

故答案为:8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,过点A20)的两条直线分别交轴于BC,其中点B在原点上方,点C在原点下方,已知AB=.

1)求点B的坐标;

2)若△ABC的面积为4,求的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在括号内填写理由.

已知:如图,DGBC ACBCEFAB,∠1=2.求证:CDAB

证明:∵DGBCACBC

∴∠DGB=ACB=90°    

DGAC   

∴∠2=DCA    

∵∠1=2∴∠1=DCA   

EFCD   

∴∠AEF=ADC   

EFAB

∴∠AEF=90°

∴∠ADC=90° CDAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BCF,有下列结论:①∠BOE=60°,②∠ABD=ACE,③OE=OD,④BC=BE+CD。其中正确的是_________。(把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,以B为圆心,BC长为半径画弧,分别交ACABDE,连接BDDE,若∠A=30°AB=AC,则∠BDE的度数为( ).

A.52.5°B.60°C.67.5°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,EAB的中点,AD//EC,AED=B.

(1)求证:AED≌△EBC;

(2)当AB=6时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1= ,Sn= (用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】M为双曲线y=上的一点,过点Mx轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,若直线y=﹣x+my轴交于点A,与x轴相交于点B.

(1)求ADBC的值.

(2)若直线y=﹣x+m平移后与双曲线y=交于P、Q两点,且PQ=3,求平移后m的值.

(3)若点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?如果存在,求出最大面积和M的坐标;如果不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知射线的内部,射线平分,射线平分

1)如图1,若,则__________度;

2)若

①如图2,若射线的内部绕点旋转,求的度数;

②若射线的外部绕点旋转(旋转中均是指小于180°的角),其余条件不变,请借助图3探究的大小,直接写出的度数.

查看答案和解析>>

同步练习册答案