精英家教网 > 初中数学 > 题目详情

【题目】在括号内填写理由.

已知:如图,DGBC ACBCEFAB,∠1=2.求证:CDAB

证明:∵DGBCACBC

∴∠DGB=ACB=90°    

DGAC   

∴∠2=DCA    

∵∠1=2∴∠1=DCA   

EFCD   

∴∠AEF=ADC   

EFAB

∴∠AEF=90°

∴∠ADC=90° CDAB

【答案】垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等.

【解析】

根据平行线的性质与判定定理即可作出解决.

证明:∵DGBCACBC

∴∠DGB=ACB=90° ( 垂直的定义 )

DGAC( 同位角相等,两直线平行 )

∴∠2=DCA ( 两直线平行,同位角相等 )

∵∠1=2∴∠1=DCA 等量代换 

EFCD( 同位角相等,两直线平行 )

∴∠AEF=ADC( 两直线平行,同位角相等 )

EFAB

∴∠AEF=90°

∴∠ADC=90° CDAB

故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线EF分别与直线AB,CD相交于点F,E,EM平分∠FED,ABCDHP分别为直线AB和线段EF上的点。

(1)如图1HM平分∠BHP,若HPEF,求∠M的度数。

(2)如图2,EN平分∠HEFAB于点N,NQEM于点Q,H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCEAB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF

1)求证:△ADE≌△BFE

2)连接EG,判断EGDF的位置关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC三顶点A(﹣50)、B(﹣24)、C(﹣1,﹣2),A'B'C'ABC关于y轴对称.

1)直接写出A'B'C'的坐标;

2)画出A'B'C'

3)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长为60cm,宽为x(cm)的大长方形被分割为7小块,除阴影 A B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为 y (cm)

(1)填空:从图可知,每个小长方形较长的一边长是_________cm (用含y的代数式表示)

(2)分别求出阴影 AB的面积,并计算阴影 AB的面积差?(用含xy的式子表示)

(3)y=10时,阴影 A与阴影 B的面积差会随着x的变化而变化吗?请你作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,点DE分别在ACBC上,且CD·BCAC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与ABBC分别交于点FG

(1)求证:AC是⊙E的切线;

(2)若AF=4,CG=5,

①求⊙E的半径;

②若Rt△ABC的内切圆圆心为I,则IE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为124;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为-26,那么=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;

(2)求证:BD=EF;

(3)试判断四边形ABNE的形状,并说明理由.

查看答案和解析>>

同步练习册答案