【题目】M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B.
(1)求ADBC的值.
(2)若直线y=﹣x+m平移后与双曲线y=交于P、Q两点,且PQ=3,求平移后m的值.
(3)若点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?如果存在,求出最大面积和M的坐标;如果不存在,试说明理由.
【答案】(1)2 (2)m=± (3)不存在最大的h,即△MPQ的面积不存在最大值
【解析】
(1) 过C作CE⊥x轴于E,过D作DF⊥y轴于F,如图1,求得A(0,m); B(m,0).求得△ABO为等腰直角三角形推出△ADF和△BCE也是等腰直角三角形设M(a,b),则ab=,CE=b,DF=a解直角三角形即可得到结论;
(2) 将y=﹣x+m代入双曲线y=中,整理得:x2﹣mx+=0,根据根与系数的关系得到:m=± ;
(3)由上述结论知x1=y2 , x2=y1 ,且AO=BO=y1+y2=x1+x2=m ①,由于x1+x2=m,x1x2=②,得到P,Q两点的坐标,得到PQ= ,根据S△MPQ= ,得到PQ为定值,于是得到PQ边上的高有最大值时,即存在面积的最大值,当M无限向x轴右侧运动时,(或向y轴的上方运动时)h的值无限增大,于是得到不存在最大的h,即△MPQ的面积不存在最大值.
(1)解:过C作CE⊥x轴于E,过D作DF⊥y轴于F,如图1,
当x=0时,y=m,
∴A(0,m);
当y=0时,x=m,
∴B(m,0).
∴△ABO为等腰直角三角形
∴∠OAB=∠OBA=45°
∴△ADF和△BCE也是等腰直角三角形
设M(a,b),则ab= ,CE=b,DF=a
∴AD= DF= a,BC= CE= b
∴ADBC= a b=2ab=2
(2)解:将y=﹣x+m代入双曲线y= 中,整理得:x2﹣mx+ =0,
设x1、x2是方程x2﹣mx+ =0的两个根(x1<x2),
∴x1+x2=m,x1x2= .
∵PQ=3 ,直线的解析式为y=﹣x+m,
∴x2﹣x1=3= = ,
解得:m=±
(3)解:由上述结论知x1=y2 , x2=y1 , 且AO=BO=y1+y2=x1+x2=m ①,
∵x1x2= ②,
∴P,Q两点的坐标可表示为P(x1 , x2),Q(x2 , x1),
∴PQ= (x2﹣x1),
∵(x2﹣x1)2=(x1+x2)2﹣4x1x2=m2﹣4 ,
∴PQ= ,
∵S△MPQ= PQh,∵PQ为定值,
∴PQ边上的高有最大值时,即存在面积的最大值,
当直线y=﹣x+m无限向x轴右侧运动时,(或向y轴的上方运动时)h的值无限增大,
∴不存在最大的h,即△MPQ的面积不存在最大值.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为-2和6,那么=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,线段AB与A1B1的端点都在格点上.
(1)在图中建立适当的直角坐标系,使点B和B1都在x轴上,且线段AB和A1B1关于y轴成轴对称;
(2)写出点A1的坐标;
(3)若y轴上有一点P,满足PA=PB.用直尺作出点P,保留作图痕迹,并证明PA1=PB1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若与成轴对称,则一定与全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.
(1)求证:AD=AF;
(2)求证:BD=EF;
(3)试判断四边形ABNE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC 为等边三角形,点 D、E 分别在边 BC、AC 上,且 AE=CD,AD 与 BE相交于点 F.则∠DFE 的度数为_____°;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com