【题目】为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.
科目:初中数学 来源: 题型:
【题目】将一副三角板按如图所示的方式叠放在一起,两直角顶点重合于点O.
(1)求∠AOD+∠BOC的度数;
(2)当AB的中点E恰好落在CD的中垂线上时,求∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人去水果批发市场采购猕猴桃,他看中了A、B两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B家的规定如下表:
数量范围 (千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上 |
价格(元) | 零售价的95% | 零售价的85% | 零售价的75% | 零售价的70% |
(1)如果他批发600千克猕猴桃,则他在A 、B两家批发分别需要多少元?
(2)如果他批发x千克猕猴桃(1500<x<2000),请你分别用含x的代数式表示他在A、B两家批发所需的费用;
(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( )
A. 12cm B. cm C. 15cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3.取BO的中点D,连接CD、MD和OC.
(1)求证:CD是⊙M的切线;
(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;
(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使S△QAM= S△PDM?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在平面直角坐标系中,点 A 为 x 轴负半轴上一点,点 B 为 x 轴正半轴上一点,C(0,﹣2),D(﹣3,﹣2).
(1)AB,CD 的位置关系为 ;△BCD 的面积为 ;S△ACD S△BCD(填两者之间的数量关系);
(2)如图 1,若∠1=100°,∠ACB=65°,求∠CAB 的度数;
(3)如图 2,若∠ADC=∠DAC,∠ACB 的平分线 CE 交 DA 的延长线于点 E,在 B 点的运动过程中的值是否变化?若不变,直接写出其值;若变化,请说明理由.(注:三角形内角和等于 180°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图2),再将它们制作成甲乙两种无盖的长方体小盒(如图1).现将300张长方形硬纸片和150张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?(注:图1中向上的一面无盖)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,且A、C、B在同一直线上,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°,其中正确结论有( )
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com