【题目】如图,在△ABC中,AD,AE分别是边BC上的中线和高,
(1)若AE=3cm,S△ABC=12cm2.求DC的长.
(2)若∠B=40°,∠C=50°,求∠DAE的大小.
【答案】(1)CD=4cm;(2)∠DAE=10°.
【解析】
(1)利用三角形的中线平分三角形面积得出S△ADC=6cm2,进而利用三角形面积得出CD的长.
(2)∠B=40°,∠C=50°,根据三角形的内角和得到∠BAC=90°,根据直角三角形斜边的中线等于斜边的一半得到根据等腰三角形的性质以及三角形外角的性质得到∠ADE=2∠B=80°,即可求出∠DAE的大小.
(1)∵AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,
∴S△ADC=6cm2,
∴
∴
解得:CD=4(cm);
(2)∵∠B=40°,∠C=50°,
∴∠BAC=90°,
又∵AD为中线,
∴
∴∠ADE=2∠B=80°,
又∵AE⊥BC,
∴∠DAE=10°.
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点C1、C2、C3…在x轴上,点A1、A2、A3…在直线l上,A1(0,1),∠A2 A1B1=45°,则点Bn的坐标为____________(用n的代数式表示,n为正整数);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有五张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼.
(1)五张铁皮中,用序号为_______的铁皮烙饼,不用刀切即可翻身正好落在“锅”中;
(2)在余下的铁皮中选出只需要切一刀(沿直线切饼,下同),然后把两小块饼都翻身,它们正好也能落在“锅”中的铁皮,画出切割线,标上角的度数.
(3)小明最后拿到的是一张图形的三角形铁皮,它既不是等腰三角形又不是直角三角形,也不知道各个角的度数,请在图中画出刀痕的位置(不超过3刀),也能使饼翻身后正好落在“锅”中.(不要写画法,但要用适当的记号或文字作简要说明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第2018个图形中等边三角形的个数是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2 .
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD= S△ABC?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4cm,BC=3cm,动点P从点A出发,沿AB以1cm/s的速度向终点B匀速运动,同时点Q从点B出发,沿B→C→D以1cm/s的速度向终点D匀速运动,当两个点中有一个到达终点后,另一个点也随之停止.连接PQ,设点P的运动时间为x(s),PQ2=y(cm2).
(1)当点Q在边CD上,且PQ=3时,求x的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)直接写出y随x增大而增大时自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com