精英家教网 > 初中数学 > 题目详情

【题目】如图,直线ab,ABC是等边三角形,点A在直线a上,边BC在直线b上,把ABC沿BC方向平移BC的一半得到A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第2018个图形中等边三角形的个数是_________

【答案】8072

【解析】

图形①中共有4个等边三角形,图形②中有8个等边三角形,图形③中有12个等边三角形,……根据数字规律易知,等边三角形个数是序号的4倍,从而得到规律.

图形①中共有4个等边三角形,图形②中有8个等边三角形,图形③中有12个等边三角形,……根据数字规律易知,等边三角形个数是序号的4倍,因此,第2018个图形中等边三角形的个数是20184=8072.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据: =1.1, =1.2, =1.3, =1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点F,G分别在ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,BAF=CAEB=D

(1)求证:BC=DE;

(2)若B=35°AFB=78°,直接写出DGB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,该抛物线与x轴的一个交点为(﹣1,0),请回答以下问题.

(1)求抛物线与x轴的另一个交点坐标
(2)一元二次方程ax2+bx+c=0(a≠0)的解为
(3)不等式ax2+bx+c<0(a≠0)的解集是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD,AE分别是边BC上的中线和高,

(1)若AE=3cm,SABC=12cm2.求DC的长.

(2)若∠B=40°,C=50°,求∠DAE的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.

(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.

(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3 ,求AG,MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

同步练习册答案