精英家教网 > 初中数学 > 题目详情

【题目】解答
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.

(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.

(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3 ,求AG,MN的长.

【答案】
(1)解:在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,

∴Rt△ABE≌Rt△AGE(HL).

∴∠BAE=∠GAE.

同理,∠GAF=∠DAF.


(2)解:MN2=ND2+DH2

∵∠BAM=∠DAH,∠BAM+∠DAN=45°,

∴∠HAN=∠DAH+∠DAN=45°.

∴∠HAN=∠MAN.

又∵AM=AH,AN=AN,

∴△AMN≌△AHN.

∴MN=HN.

∵∠BAD=90°,AB=AD,

∴∠ABD=∠ADB=45°.

∴∠HDN=∠HDA+∠ADB=90°.

∴NH2=ND2+DH2

∴MN2=ND2+DH2


(3)解:由(1)知,BE=EG,DF=FG.

设AG=x,则CE=x﹣4,CF=x﹣6.

在Rt△CEF中,

∵CE2+CF2=EF2

∴(x﹣4)2+(x﹣6)2=102

解这个方程,得x1=12,x2=﹣2(舍去负根).

即AG=12.

在Rt△ABD中,

在(2)中,MN2=ND2+DH2,BM=DH,

∴MN2=ND2+BM2

设MN=a,则

即a 2=(9 ﹣a) 2+(3 2

.即


【解析】(1)根据高AG与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设出线段的长,结合方程思想,用数形结合得到结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=3,BC=5,以点B为圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于 PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ab,ABC是等边三角形,点A在直线a上,边BC在直线b上,把ABC沿BC方向平移BC的一半得到A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第2018个图形中等边三角形的个数是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC△ECD都是等边三角形

(1)如图1,若B、C、D三点在一条直线上,求证:BE=AD;

(2)保持△ABC不动,将△ECD绕点C顺时针旋转,使∠ACE=90°(如图2),BCDE有怎样的位置关系?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.

(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得SPMD= SABC?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC中,∠ACB=90°,AC=6cm,BC =8cm.PA点出发,沿路径向终点B运动,点QB点出发,沿路径向终点A运动.P Q分别的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过点PQPElE,QFlF.则点P运动多少秒时,△PEC和△CFQ全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,
易证△ABC≌△BDE,从而得到△BCD的面积为
初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.
简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=12cm,且BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.

(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;

(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?

查看答案和解析>>

同步练习册答案