【题目】如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.
(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;
(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;
(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
【答案】(1)a=﹣1,k=﹣1,b=﹣2,x<﹣1或x>2;(2)△PAB面积的最大值为,此时点P的坐标为(,);(3)P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).
【解析】
(1)利用待定系数法即可求得a,k,b的值,根据图象即可得出不等式的解集;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),由此可得PD=m+1,PE=﹣m2+4.再根据S△APB=S△APC+S△BPC﹣S△ABC,代入数据即可得S△APB与m的二次函数关系式,利用二次函数求最值的方法求得m的值及S△APB 的值最大.再求得点P的坐标即可;(3)(3)根据平行四边形的性质和坐标特点解答即可.
解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,
把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,
解得:,
所以a=﹣1,k=﹣1,b=﹣2,
关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,
(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.
∵A(﹣1,﹣1),B(2,﹣4),
∴C(﹣1,﹣4),AC=BC=3,
设点P的横坐标为m,则点P的纵坐标为﹣m2.
过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),
∴PD=m+1,PE=﹣m2+4.
∴S△APB=S△APC+S△BPC﹣S△ABC
=
=
=.
∵<0,,﹣1<m<2,
∴当时,S△APB 的值最大.
∴当时,,S△APB=,
即△PAB面积的最大值为,此时点P的坐标为(,)
(3)存在三组符合条件的点,
当以P,Q,A,B为顶点的四边形是平行四边形时,
∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),
可得坐标如下:
①P′的横坐标为﹣3,代入二次函数表达式,
解得:P'(﹣3,﹣9),Q'(0,﹣12);
②P″的横坐标为3,代入二次函数表达式,
解得:P″(3,﹣9),Q″(0,﹣6);
③P的横坐标为1,代入二次函数表达式,
解得:P(1,﹣1),Q(0,﹣4).
故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),
Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,现将Rt△ABC绕点A顺时针旋转30°得到△AB′C′,则图中阴影部分面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如示意图,小华家(点A处)和公路(l)之间竖立着一块35m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路计为BC.一辆以60km/h匀速行驶的汽车经过公路段的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离.(精确到1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=3cm,以B为圆心,1cm长为半径画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′.在点P移动的过程中,BP′长度的最小值为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.
(1)用含x的代数式表示线段DG的长;
(2)设△DEF的面积为 y,求y与x之间的函数关系式,并写出定义域;
(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有分别标有汉字“书”、“ 香”、“ 历”、“ 城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.
(1)若从中任取一个球,球上的汉字刚好是 “书”的概率为__________.
(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“历城”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,反比例函数y=的图象过点A(6,1).
(1)求反比例函数的表达式;
(2)过点A的直线与反比例函数y=图象的另一个交点为B,与y轴交于点P,若AP=3PB,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k的关联直线.
(1)求抛物线y=x2+6x﹣1的关联直线;
(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;
(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com