分析 阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.
拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.
(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可计算.
解答 解:如图①中,∵四边形ABCD是正方形,
∴AD=AB=CD,∠ADC=90°,
∵△ADE≌△DFC,
∴DF=CD=AE=AD,
∵∠FDC=60°+90°=150°,
∴∠DFC=∠DCF=∠ADE=∠AED=15°,
∴∠FDE=60°+15°=75°,
∴∠MFD+∠FDM=90°,
∴∠FMD=90°,
故答案为90°
(1)∵△ABE为等边三角形,
∴∠EAB=60°,EA=AB.
∵△ADF为等边三角形,
∴∠FDA=60°,AD=FD.
∵四边形ABCD为矩形,
∴∠BAD=∠ADC=90°,DC=AB.
∴EA=DC.
∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,
∴∠EAD=∠CDF.
在△EAD和△CDF中,
$\left\{\begin{array}{l}{AE=CD}\\{∠EAD=∠FDC}\\{AD=DF}\end{array}\right.$,
∴△EAD≌△CDF.
∴ED=FC;
(2)∵△EAD≌△CDF,
∴∠ADE=∠DFC=20°,
∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.
点评 本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com