【题目】如图,在中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②;③.
(1)上述三个条件中,由哪两个条件可以判定是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,说明你的理由.
【答案】(1)①②或①③;(2)见解析.
【解析】
(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,
(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.
解:(1)①②;①③.
(2)选①③证明如下,
∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.
选①②证明如下,
在△EBO与△DCO中,
∵,
∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.
(1)求证:MD=MC;
(2)若⊙O的半径为5,AC=4,求MC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a,宽为b,且a>b.
(1)用含a、b的代数式表示长方形ABCD的长AD、宽AB;
(2)用含a、b的代数式表示阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑摩托车从N地出发沿同一条公路匀速前往M地,
已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),
y与t的函数关系如图1所示,请解决以下问题:
(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.
(2)①求点D的纵坐标.
②求M,N两地之间的距离.
(3)设乙离M地的路程为S乙 (km),请直接写出S甲 与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
(实践操作)三角尺中的数学
数学实践活动课上,“奋进”小组将一副直角三角尺的直角顶点叠放在一起,如图1,使直角顶点重合于点C.
(问题发现)
(1)①填空:如图1,若∠ACB=145°,则∠ACE的度数是 ,∠DCB的度数 ,∠ECD的度数是 .
②如图1,你发现∠ACE与∠DCB的大小有何关系?∠ACB与∠ECD的大小又有何关系?请直接写出你发现的结论.
(类比探究)
(2)如图2,当△ACD与△BCE没有重合部分时,上述②中你发现的结论是否还依然成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,则与互相垂直.
下面四组向量:①=(3,﹣9),=(1,﹣);
②=(2,π0),=(2﹣1,﹣1);
③=(cos30°,tan45°),=(sin30°,tan45°);
④=(+2,),=(﹣2,).
其中互相垂直的组有( )
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
已知:如图1,等边△A1A2A3内接于⊙O,点P是上的任意一点,连接PA1,PA2,PA3,可证:PA1+PA2=PA3,从而得到:是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作∠PA1M=60°,A1M交A2P的延长线于点M.
∵△A1A2A3是等边三角形,
∴∠A3A1A2=60°,
∴∠A3A1P=∠A2A1M
又A3A1=A2A1,∠A1A3P=∠A1A2P,
∴△A1A3P≌△A1A2M
∴PA3=MA2=PA2+PM=PA2+PA1.
∴,是定值.
(2)延伸:如图2,把(1)中条件“等边△A1A2A3”改为“正方形A1A2A3A4”,其余条件不变,请问:还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△A1A2A3”改为“正五边形A1A2A3A4A5”,其余条件不变,则= (只写出结果).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com