精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】根据抛物线的顶点坐标(﹣2,﹣9a),根据顶点坐标公式可求得b=4a,c=-5a,从而可得抛物线的解析式为y=ax2+4ax﹣5a,然后根据二次函数的性质一一判断即可.

a>0,

∵抛物线的顶点坐标(﹣2,﹣9a),

=﹣2,=﹣9a,

b=4a,c=-5a,

∴抛物线的解析式为y=ax2+4ax﹣5a,

4a+2b+c=4a+8a﹣5a=7a>0,故①正确,

5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,

∵抛物线y=ax2+4ax﹣5ax轴于(﹣5,0),(1,0),

∴若方程a(x+5)(x﹣1)=﹣1有两个根x1x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,

若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了解学生每天参加户外活动的情况随机抽查了100名学生每天参加户外活动的时间情况并将抽查结果绘制成如图所示的扇形统计图

请你根据图中提供的信息解答下列问题

(1)请直接写出图中的值,并求出本次抽查中学生每天参加户外活动时间的中位数;

(2)求本次抽查中学生每天参加户外活动的平均时间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以ABC的边AB为直径画⊙O,交AC于点D,半径OEBD,连接BEDEBD,设BEAC于点F,若∠DEBDBC

(1)求证:BC是⊙O的切线;

(2)若BFBC=2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形是正方形,点上,绕点顺时针旋转后能够与重合,若,试求的长是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)

(1)转动转盘一次,求转出的数字是-2的概率;

(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线OABC和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:

1)小聪在超市购物的时间为   分钟,小聪返回学校的速度为    千米/分钟;

2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;

3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.已知AB两点的坐标分别为A(0)B(20).直线AB与反比例函数的图象交于点C和点D(1a)

1)求直线AB和反比例函数的解析式.

2)求ACO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).

(1)求km的值;

(2)已知点P(nn)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.

①当n=1时,判断线段PM与PN的数量关系,并说明理由;

②若PN≥PM,结合函数的图象,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】弦AB,CD是⊙O的两条平行弦,⊙O的半径为5,AB=8,CD=6,则AB,CD之间的距离为( )

A. 7 B. 1 C. 4或3 D. 7或1

查看答案和解析>>

同步练习册答案