精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.

(1)求证:ADED;

(2)若CD=4,AF=2,求⊙O的半径.

【答案】(1)证明见解析;(2)O的半径为

【解析】(1)连接OC,如图,先证明OCAD,然后利用切线的性质得OCDE,从而得到ADED;

(2)OCBFH,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.

(1)证明:连接OC,如图,

AC平分∠BAD,

∴∠1=2,

OA=OC,

∴∠1=3,

∴∠2=3,

OCAD,

ED切⊙O于点C,

OCDE,

ADED;

(2)解:OCBFH,如图,

AB为直径,

∴∠AFB=90°,

易得四边形CDFH为矩形,

FH=CD=4,CHF=90°,

OHBF,

BH=FH=4,

BF=8,

RtABF中,AB=

∴⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在正方形ABCD中、点EBC边上一点,FAB延长线上一点,且BEBF,连接AEEFCF

1)若∠BAE18°,求∠EFC的度数;

2)求证:AECF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推进球类运动的发展,某校组织校内球类运动会,分篮球、足球、排球、羽毛球、乒乓球五项,要求每位学生必须参加一项并且只能参加一项,某班有一名学生根据自己了解的班内情况绘制了如图所示的完整统计表和扇形统计图.

请根据图表中提供的信息,解答下列问题:

1)图表中

2)该班参加乒乓球活动的4位同学中,有3位男同学(分别用表示)和1位女同学(用表示),现准备从中选出两名同学参加比赛,用树状图或列表法求出恰好选出一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的切线,点C在直径AB的延长线上.

(1)求证:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1△OA1B1关于点B1成中心对称,再作△B2A3B3△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(

A. (4n﹣1,B. (2n﹣1,C. (4n+1,D. (2n+1,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一圆弧形桥拱的圆心为,拱桥的水面跨度米,桥拱到水面的最大高度米.求:

桥拱的半径;

现水面上涨后水面跨度为米,求水面上涨的高度为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠BAC60°AB6,将ABC绕点A逆时针方向旋转60°得到ABC,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线C1y=﹣(x+m2+m2m0),抛物线C2y=(xn2+n2n0),称抛物线C1C2互为派对抛物线,例如抛物线C1y=﹣(x+12+1与抛物线C2y=(x2+2是派对抛物线,已知派对抛物线C1C2的顶点分别为AB,抛物线C1的对称轴交抛物线C2C,抛物线C2的对称轴交抛物线C1D

1)已知抛物线①y=﹣x22x②y=(x32+3③y=(x2+2④yx2x+,则抛物线①②③④中互为派对抛物线的是   (请在横线上填写抛物线的数字序号);

2)如图1,当m1n2时,证明ACBD

3)如图2,连接ABCD交于点F,延长BAx轴的负半轴于点E,记BDx轴于GCDx轴于点H,∠BEO=∠BDC

求证:四边形ACBD是菱形;

若已知抛物线C2y=(x22+4,请求出m的值.

查看答案和解析>>

同步练习册答案